The Bifurcations of Completely Integrable Holonomic Systems of First-Order Differential Equations
Abstract
:1. Introduction
2. Preliminary Theorem
3. Classification Theorem
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lychagin, V.V. Local classification of non-linear first order partial differential equations. Russ. Math. Surv. 1975, 31, 105–175. [Google Scholar] [CrossRef]
- Izumiya, S. The theory of Legendrian unfoldings and first-order differential equations. Proc. Roy. Soc. Edinb. A 1993, 123, 517–532. [Google Scholar] [CrossRef]
- Izumiya, S. Completely integrable holonomic systems of first-order differential equations. Proc. Roy. Soc. Edinb. A 1994, 125, 567–586. [Google Scholar] [CrossRef]
- Izumiya, S.; Kossioris, G.T. Semi-local classification of geometric singularities for Hamilton-Jacobi equations. J. Differ. Equ. 1995, 118, 166–193. [Google Scholar] [CrossRef]
- Izumiya, S.; Kurokawa, Y. Holonomic systems of Clairaut type. Differ. Geom. Appl. 1995, 5, 219–235. [Google Scholar] [CrossRef]
- Izumiya, S.; Sun, W.Z. Singularities of solution surfaces for quasilinear first-order partial differential equations. Geom. Dedicata 1997, 64, 331–341. [Google Scholar] [CrossRef]
- Dammon, J. Generic properties of solutions to partial differential equations. Arch. Ration. Mech. Anal. 1997, 140, 353–403. [Google Scholar] [CrossRef]
- Bruce, J.W.; Fletcher, G.J.; Tari, F. Bifurcations of binary differential equations. Proc. Roy. Soc. Edinb. Sect. A 2000, 130, 485–506. [Google Scholar] [CrossRef]
- Takahashi, M. Bifurcations of holonomic systems of general Clairaut type. Hokkaido Math. J. 2006, 35, 905–934. [Google Scholar] [CrossRef]
- Takahashi, M. Bifurcations of completely integrable first-order ordinary differential equations. J. Math. Sci. 2007, 144, 3854–3869. [Google Scholar] [CrossRef]
- Xu, J.B.; Chen, L.; Sun, W.Z. Bifurcations of completely integrable 2-variable first-order partial differential equations. J. Math. Anal. Appl. 2011, 381, 638–648. [Google Scholar] [CrossRef]
- Kawai, K. Bifurcations of ordinary differential equations of Clairaut type. Differ. Geom. Appl. 2016, 47, 159–189. [Google Scholar] [CrossRef]
- Golubitsky, M.; Schaeffer, D. A theory for imperfect bifurcation via singularity theory. Commun. Pur. Appl. Math. 1979, 32, 21–98. [Google Scholar] [CrossRef]
- Golubitsky, M.; Schaeffer, D. Imperfect bifurcation in the presence of symmetry. Commun. Math. Phys. 1979, 67, 205–232. [Google Scholar] [CrossRef]
- Golubitsky, M.; Langford, W.F. Classification and unfoldings of degenerate Hopf bifurcations. J. Differ. Equ. 1981, 41, 375–415. [Google Scholar] [CrossRef]
- Broer, H.W.; Hoveijn, I.; Noort, M.V.; Vegter, G. The inverted pendulum: A singularity theory approach. J. Differ. Equ. 1999, 157, 120–149. [Google Scholar] [CrossRef]
- Du, D.Y.; Tang, Y. Bifurcation analysis of differential-difference-algebraic equations. Int. J. Bifurc. Chaos Appl. Sci. Eng. 2004, 14, 2853–2865. [Google Scholar] [CrossRef]
- Wagenknecht, T. Two-heteroclinic orbits emerging in the reversible homoclinic pitchfork bifurcation. Nonlinearity 2005, 18, 527–542. [Google Scholar] [CrossRef]
- Chen, L.; Han, Q.X.; Pei, D.H.; Sun, W.Z. The singularities of null surfaces in anti de Sitter 3-space. J. Math. Anal. Appl. 2010, 366, 256–265. [Google Scholar] [CrossRef]
- Chen, L.; Sun, W.Z.; Pei, D.H. Contact finite determinacy of relative map germs. Commun. Math. Res. 2010, 26, 1–6. [Google Scholar]
- Garay, M.D. On simple families of functions and their Legendrian mappings. Proc. Lond. Math. Soc. 2004, 88, 158–184. [Google Scholar] [CrossRef]
- Izumiya, S. Perestroikas of optical wave fronts and Graphlike Legendrian unfoldings. J. Differ. Geom. 1993, 38, 485–500. [Google Scholar] [CrossRef]
- Izumiya, S.; Pei, D.H.; Sano, T. Singularities of hyperbolic Gauss maps. Proc. Lond. Math. Soc. 2003, 86, 485–512. [Google Scholar] [CrossRef]
- Izumiya, S.; Takahashi, M. Spacelike parallels and evolutes in Minkowski pseudo-spheres. J. Geom. Phys. 2007, 57, 1569–1600. [Google Scholar] [CrossRef]
- Takahashi, M. Stabilities of affine Legendrian submanifolds and their moduli space. J. Differ. Equ. 2003, 190, 579–599. [Google Scholar] [CrossRef]
- Nishimura, T. Whitney umbrellas and swallowtails. Pac. J. Math. 2011, 252, 459–473. [Google Scholar] [CrossRef]
- Goryunov, V.V. Geometry of bifurcation diagrams of simple projections onto the line. Funct. Anal. Appl. 1981, 15, 77–82. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, J.; Liu, K.; Cheng, X. The Bifurcations of Completely Integrable Holonomic Systems of First-Order Differential Equations. Axioms 2024, 13, 55. https://doi.org/10.3390/axioms13010055
Xu J, Liu K, Cheng X. The Bifurcations of Completely Integrable Holonomic Systems of First-Order Differential Equations. Axioms. 2024; 13(1):55. https://doi.org/10.3390/axioms13010055
Chicago/Turabian StyleXu, Jingbo, Kangping Liu, and Xiaoliang Cheng. 2024. "The Bifurcations of Completely Integrable Holonomic Systems of First-Order Differential Equations" Axioms 13, no. 1: 55. https://doi.org/10.3390/axioms13010055
APA StyleXu, J., Liu, K., & Cheng, X. (2024). The Bifurcations of Completely Integrable Holonomic Systems of First-Order Differential Equations. Axioms, 13(1), 55. https://doi.org/10.3390/axioms13010055