Convex (α, β)-Generalized Contraction and Its Applications in Matrix Equations
Abstract
:1. Introduction
2. Preliminaries
- (i)
- (ii)
- (iii)
- (iv)
3. Convex ()-Generalized Contraction Mapping
- (1)
- If and , then the condition is trivially satisfied.
- (2)
- If , and , then
- (3)
- If , and , then
- (4)
- If , and , then
4. Monotone Convex ()-Generalized Contraction Mapping
5. Solutions to Linear Matrix Equation
- (1)
- The mapping G has a unique fixed point in
- (2)
- Given an initial matrix , the sequence is defined as follows:
6. Solutions to Nonlinear Matrix Equations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Anderson, W.N., Jr.; Morley, T.D.; Trapp, G.E. Positive solutions to X = A − BX−1B*. Linear Algebra Appl. 1990, 134, 53–62. [Google Scholar] [CrossRef]
- Ran, A.C.M.; Reurings, M.C.B. A fixed point theorem in partially ordered sets and some applications to matrix equations. Proc. Am. Math. Soc. 2004, 132, 1435–1443. [Google Scholar] [CrossRef]
- Banach, S. Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales. Fund. Math. 1922, 3, 133–181. [Google Scholar] [CrossRef]
- Nieto, J.J.; Rodríguez-López, R. Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations. Order 2005, 22, 223–239. [Google Scholar] [CrossRef]
- Zeidler, E. Nonlinear Functional Analysis and Its Applications. I; Wadsack, P.R., Translator; Springer: New York, NY, USA, 1986; p. xxi+897. [Google Scholar] [CrossRef]
- Khamsi, M.A.; Kirk, W.A. An Introduction to Metric Spaces and Fixed Point Theory; Pure and Applied Mathematics; Wiley-Interscience: New York, NY, USA, 2001; p. x+302. [Google Scholar] [CrossRef]
- Granas, A.; Dugundji, J. Fixed Point Theory; Springer Monographs in Mathematics; Springer: New York, NY, USA, 2003; p. xvi+690. [Google Scholar] [CrossRef]
- Gupta, V.; Ansari, A.H.; Mani, N.; Sehgal, I. Fixed point theorem satisfying generalized weakly contractive condition of integral type using C-class functions. Thai J. Math. 2022, 20, 1695–1706. [Google Scholar]
- Gupta, V.; Mani, N.; Sharma, R.; Tripathi, A.K. Some fixed point results and their applications on integral type contractive condition in fuzzy metric spaces. Bol. Soc. Parana. Mat. 2022, 40, 9. [Google Scholar] [CrossRef]
- Mani, N.; Sharma, A.; Shukla, R. Fixed point results via real-valued function satisfying integral type rational contraction. Abstr. Appl. Anal. 2023, 2023, 2592507. [Google Scholar] [CrossRef]
- Pant, R.; Shukla, R. New fixed point results for Proinov-Suzuki type contractions in metric spaces. Rend. Circ. Mat. Palermo 2022, 71, 633–645. [Google Scholar] [CrossRef]
- Shukla, R.; Pant, R.; Nashine, H.K.; De la Sen, M. Approximating Solutions of Matrix Equations via Fixed Point Techniques. Mathematics 2021, 9, 2684. [Google Scholar] [CrossRef]
- Shukla, S.; Rai, S.; Shukla, R. A relation-theoretic set-valued version of Prešić-Ćirić theorem and applications. Bound. Value Probl. 2023, 2023, 59. [Google Scholar] [CrossRef]
- Petruşel, A.; Petruşel, G. Fixed point results for decreasing convex orbital operators in Hilbert spaces. J. Fixed Point Theory Appl. 2021, 23, 35. [Google Scholar] [CrossRef]
- Popescu, O. Fixed-point results for convex orbital operators. Demonstr. Math. 2023, 56, 20220184. [Google Scholar] [CrossRef]
- Llorens-Fuster, E. Partially nonexpansive mappings. Adv. Theory Nonlinear Anal. Appl. 2002, 6, 565–573. [Google Scholar] [CrossRef]
- Busemann, H. Spaces with non-positive curvature. Acta Math. 1948, 80, 259–310. [Google Scholar] [CrossRef]
- Ariza-Ruiz, D.; Leuştean, L.; López-Acedo, G. Firmly nonexpansive mappings in classes of geodesic spaces. Trans. Am. Math. Soc. 2014, 366, 4299–4322. [Google Scholar] [CrossRef]
- Kohlenbach, U. Some logical metatheorems with applications in functional analysis. Trans. Am. Math. Soc. 2005, 357, 89–128. [Google Scholar] [CrossRef]
- Rus, I.A. Generalized Contractions and Applications; Cluj University Press: Cluj-Napoca, Romania, 2001; p. 198. [Google Scholar]
- El-Sayed, S.M.; Ran, A.C.M. On an iteration method for solving a class of nonlinear matrix equations. SIAM J. Matrix Anal. Appl. 2002, 23, 632–645. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shukla, R.; Sinkala, W. Convex (α, β)-Generalized Contraction and Its Applications in Matrix Equations. Axioms 2023, 12, 859. https://doi.org/10.3390/axioms12090859
Shukla R, Sinkala W. Convex (α, β)-Generalized Contraction and Its Applications in Matrix Equations. Axioms. 2023; 12(9):859. https://doi.org/10.3390/axioms12090859
Chicago/Turabian StyleShukla, Rahul, and Winter Sinkala. 2023. "Convex (α, β)-Generalized Contraction and Its Applications in Matrix Equations" Axioms 12, no. 9: 859. https://doi.org/10.3390/axioms12090859
APA StyleShukla, R., & Sinkala, W. (2023). Convex (α, β)-Generalized Contraction and Its Applications in Matrix Equations. Axioms, 12(9), 859. https://doi.org/10.3390/axioms12090859