Using Vector-Product Loop Algebra to Generate Integrable Systems
Abstract
:1. Introduction
- (1)
- (2)
- (3)
- (1)
- (2)
- (3)
2. A Positive Flow and a Negative Flow
3. Isospectral and Non-Isospectral Integrable Hierachies
3.1. Isospectral Integrable Hierarchy
3.2. Non-Isospectral Integrable Hierarchy
4. A Vector-Product Trace Identity
5. An Enlarged Loop Algebra of the Loop Algebra and Its Applications
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Tu, G.Z. The trace identity, a powerful tool for constructing the Hamiltonian structure of integrable systems. J. Math. Phys. 1989, 30, 330. [Google Scholar] [CrossRef]
- Ma, W.X. A new hierarchy of Liouville integrable generalized Hamiltonian equations and its reduction. Chin. J. Contemp. Math. 1192, 13, 79. [Google Scholar]
- Ma, W.X. A hierarchy of Liouville integrable finite-dimensional Hamiltonian systems. Appl. Math. Mech. 1992, 13, 369. [Google Scholar]
- Hu, X.B. A powerful approach to generate new integrable systems. J. Phys. A 1994, 27, 2497. [Google Scholar] [CrossRef]
- Guo, F.K.; Zhang, Y.F. The quadratic-form identity for constructing the Hamiltonian structure of integrable systems. J. Phys. A 2005, 38, 8537–8548. [Google Scholar] [CrossRef]
- Ma, W.X.; Chen, M. Hamiltonian and quasi-Hamiltonian structures associated with semi-direct sums of Lie algebra. J. Phys. A 2006, 39, 10787–10801. [Google Scholar] [CrossRef]
- Zhang, Y.; Mei, J.; Guan, H. A method for generating isospectral and nonisospectral hierarchies of equations as well as symmetries. J. Geomitry Phys. 2020, 147, 103538. [Google Scholar] [CrossRef]
- Lu, H.; Zhang, Y. Some generalized isospectral-nonisospectral integrable hierarchies. Commun. Nonlinear Sci. Numer. Simul. 2021, 100, 105851. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, Y. A kind of nonisospectral and isospectral integrable couplings and their Hamiltonian systems. Commun. Nonlinear Sci. Numer. Simul. 2021, 99, 105822. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, Y. A nonisospectral integrable model of AKNS hierarchy and KN hierarchy, as well as its extended system. Int. J. Geom. Methods Mod. Phys. 2021, 18, 2150156. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, Y. Three kinds of nonisospectral integrable model of Wadati-Konno-Ichikawa soliton hierarchies. Rocky Mt. J. Math. 2021, 51, 1489C1502. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, X. A scheme for generating nonisospectral integrable hierarchies and its related applications. Acta Math. Sin. 2021, 37, 707–730. [Google Scholar] [CrossRef]
- Zhang, Y.; Tam, H. Four Lie algebras associated with R6 and their applications. J. Math. Phys. 2010, 51, 093514. [Google Scholar] [CrossRef]
- Zhang, Y.; Tam, H. Three kinds of coupling integrable couplings of the Korteweg-de Vries hierarchy of evolution equations. J. Math. Phys. 2010, 51, 043510. [Google Scholar] [CrossRef]
- Zhang, Y.; Fan, E. Coupling integrable couplings and bi-Hamiltonian structure associated with the Boiti-Pempinelli-Tu hierarchy. J. Math. Phys. 2010, 51, 083506. [Google Scholar] [CrossRef]
- Honwah, T.; Zhang, Y.F. An integrable system and associated integrable models as well as Hamiltonian structures. J. Math. Phys. 2012, 53, 103508. [Google Scholar]
- Li, Y. Soliton and Integrable System; Shanghai Scientific and Technological Education Publishing House: Shanghai, China, 1999. [Google Scholar]
- Ma, W. An approach for constructing non-isospectral hierarchies of evolution equations. J. Phys. A Math. Gen. 1992, 25, L719–L726. [Google Scholar] [CrossRef]
- Qiao, Z. New hierarchies of isospectral and non-isospectral integrable NLEEs derived from the Harry-Dym spectral problem. Phys. A 1998, 252, 377–387. [Google Scholar] [CrossRef]
- Anco, S.C. Symmetry actions and brachets for adjoint-symmetries. I: Main results and applications. arXiv 2022, arXiv:2008.07476. [Google Scholar]
- Anco, S.C. Symmetry actions and brachets for adjoint-symmetries. II: Physical examples. arXiv 2022, arXiv:2208.09994. [Google Scholar]
- Fokas, A.S.; Fuchssteiner, B. The hierarchy of the Benjamin-Ono equation. Phys. Lett. A 1981, 86, 341–345. [Google Scholar] [CrossRef]
- Li, Y.S.; Zhu, G.C. New set of symmetries of the integrable equations, Lie algebra and non-isospectral evolution equations: II. AKNS system. J. Phys. A Math. Gen. 1986, 19, 3713–3725. [Google Scholar]
- Li, Y.S.; Cheng, Y. Symmetries and conserved quantities of new KdV hierarchy of equations. Sientia Sin. A 1988, 1, 1–7. (In Chinese) [Google Scholar]
- Tian, C. New strong symmetries, symmetries and Lie algebra of the Burgers equation. Sientia Sin. A 1987, 10, 1009–1018. (In Chinese) [Google Scholar]
- Lou, S.Y. Integrable models constructed from the symmetries of the modified KdV equation. Phys. Lett. B 1993, 302, 261–264. [Google Scholar] [CrossRef]
- Lou, S.Y.; Yao, R.X. Invariant functions, symmetries and primary branch solutions of first order autonomous systems. Commun. Thero. Phys. 2017, 68, 21–28. [Google Scholar] [CrossRef]
- Lou, S.Y.; Yao, R.X. Primary branch solutions of first order autonomous scalar partial diffential equation via Lie symmetry approach. J. Nonlinear Math. Phys. 2017, 24, 379–392. [Google Scholar] [CrossRef]
- Ma, W.X.; Zhou, R.G. A coupled AKNS-Kaup-Newell soliton hierarchy. J. Math. Phys. 1999, 40, 4419–4428. [Google Scholar] [CrossRef]
- Tu, G.Z. On Liouville integrability of zero-curvature equations and the Yang hierarchy. J. Phys. A Math. Gen. 1989, 22, 2375–2386. [Google Scholar]
- Ma, W.X. Conservation laws of discrete evolution equations by symmetries and adjoint symmetries. Symmetry 2015, 7, 714–725. [Google Scholar] [CrossRef]
- Olver, P.J. Application of Lie Groups to Differential Equations; Springer: New York, NY, USA, 1993. [Google Scholar]
- Göktas, U.; Hereman, W.; Erdmann, G. Computation of Conserved densities for systems of nonlinear differential-difference equations. Phys. Lett. A 1997, 263, 30–38. [Google Scholar] [CrossRef]
- Bila, N.; Niesen, J. On a new procedure for finding nonclassical symmetries. J. Symb. Comput. 2004, 38, 1523–1533. [Google Scholar] [CrossRef]
- Ibragimov, N.H. A new conservation theorem. J. Math. Appl. 2007, 333, 311–328. [Google Scholar] [CrossRef]
- Djordjevic, V.D.; Atanackovic, T.M. Similarity solutions to nonlinear heat condition and Burgers/Korteweg-de Vries fractional equations. J. Comput. Appl. Math. 2008, 222, 701–714. [Google Scholar] [CrossRef]
- Buckwar, E.; Luchko, Y. Invariance of partial differential equation of fractional order under the Lie group of scaling transformations. J. Math. Anal. Appl. 1998, 227, 81–97. [Google Scholar] [CrossRef]
- Leo, R.A.; Sicuro, G.; Tempesta, P. A foundational approach to the Lie theory for fractional order partial differential equations. Fract. Calc. Appl. Anal. 2017, 20, 212–231. [Google Scholar] [CrossRef]
- Huang, Q.; Shen, S.F. Lie symmetries and group classification of class of time fractional evolution systems. J. Math. Phys. 2015, 56, 123504. [Google Scholar] [CrossRef]
- Gazizov, R.K.; Kasatkin, A.A.; Lukashchuk, S.Y. Symmetry properties of fractional diffusion equations. Phys. Scr. 2009, T136, 014016. [Google Scholar] [CrossRef]
- Wang, G.W.; Xu, T.Z.; Feng, T. Lie symmetry analysis and explicit solutions of the time fractional fifth-order KdV equation. PLoS ONE 2014, 9, e88336. [Google Scholar] [CrossRef]
- Wang, G.W.; Xu, T.Z. Invariant analysis and explicit solutions of the time fractional nonlinear perturbed Burgers equations. Nonlinear Anal. Model. Control. 2015, 20, 570–584. [Google Scholar] [CrossRef]
- Wang, G.W.; Xu, T.Z. Symmetry properties and explicit solutions of the nonlinear time fractional KdV equation. Bound. Value Probl. 2013, 2013, 232. [Google Scholar] [CrossRef]
- Kupershmidt, B.A. Dark equations. J. Nonlinear Math. Phys. 2001, 8, 363–445. [Google Scholar] [CrossRef]
- Wang, G.W.; Liu, X.Q.; Zhang, Y.Y. Symmetry reduction. exact solutions and conservation laws of a new fifth-order nonlinear integrable equation. Commun. Nonlinear Sci. Numer. Simulat. 2013, 19, 2313–2320. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Feng, B.; Zhang, Y.; Ju, L. Using Vector-Product Loop Algebra to Generate Integrable Systems. Axioms 2023, 12, 840. https://doi.org/10.3390/axioms12090840
Zhang J, Feng B, Zhang Y, Ju L. Using Vector-Product Loop Algebra to Generate Integrable Systems. Axioms. 2023; 12(9):840. https://doi.org/10.3390/axioms12090840
Chicago/Turabian StyleZhang, Jian, Binlu Feng, Yufeng Zhang, and Long Ju. 2023. "Using Vector-Product Loop Algebra to Generate Integrable Systems" Axioms 12, no. 9: 840. https://doi.org/10.3390/axioms12090840
APA StyleZhang, J., Feng, B., Zhang, Y., & Ju, L. (2023). Using Vector-Product Loop Algebra to Generate Integrable Systems. Axioms, 12(9), 840. https://doi.org/10.3390/axioms12090840