Some Relations on the rRs(P,Q,z) Matrix Function
Abstract
:1. Introduction
Preliminary Remarks
- 1.
- If , then the power series (8) converges for all finite z.
- 2.
- If , then the power series (8) diverges for all z, .
- 3.
- If , then the power series (8) is convergent for and diverges for .
- 4.
- If , then the power series (8) is absolutely convergent for when
- 5.
- If , then the power series (8) is conditionally convergent for when
- 6.
2. Definition and Convergence Conditions for the Matrix Function
3. Order and Type of the Matrix Function
4. Contiguous Function Relations
5. Integrals Involving the Matrix Function
6. Some Special Cases and Applications
7. Conclusions or Concluding Remarks
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Constantine, A.G.; Muirhead, R.J. Partial differential equations for hypergeometric functions of two argument matrices. J. Multivar. Anal. 1972, 3, 332–338. [Google Scholar] [CrossRef]
- James, A.T. Special Functions of Matrix and Single Argument in Statistics in Theory and Application of Special Functions; Academic Press: New York, NY, USA, 1975. [Google Scholar]
- Mathai, A.M. A Handbook of Generalized Special Functions for Statistical and Physical Sciences; Oxford University Press: Oxford, UK, 1993. [Google Scholar]
- Mathai, A.M.; Haubold, H.J. An Introduction to Fractional Calculus; Nova Science Publishers: New York, NY, USA, 2017. [Google Scholar]
- Jódar, L.; Cortés, J.C. Some properties of Gamma and Beta matrix functions. Appl. Math. Lett. 1998, 11, 89–93. [Google Scholar] [CrossRef]
- Jódar, L.; Cortés, J.C. On the hypergeometric matrix function. J. Comput. Appl. Math. 1998, 99, 205–217. [Google Scholar] [CrossRef]
- Jódar, L.; Cortés, J.C. Closed form general solution of the hypergeometric matrix differential equation. Math. Comput. Model. 2000, 32, 1017–1028. [Google Scholar] [CrossRef]
- Dwivedi, R.; Sahai, V. On the hypergeometric matrix functions of two variables. Linear Multilinear Algebra 2018, 66, 1819–1837. [Google Scholar] [CrossRef]
- Dwivedi, R.; Sahai, V. A note on the Appell matrix functions. Quaest. Math. 2020, 43, 321–334. [Google Scholar] [CrossRef]
- Abdullah, A.; Bayram, C.; Sahin, R. On the matrix versions of Appell hypergeometric functions. Quaest. Math. 2014, 37, 31–38. [Google Scholar]
- Liu, H. Some generating relations for extended Appell’s and Lauricella’s hypergeometric functions. Rocky Mt. J. Math. 2014, 44, 1987–2007. [Google Scholar] [CrossRef]
- Bayram, C.; Rabia, A. Multivariable matrix generalization of Gould-Hopper polynomials. Miskolc Math. Notes 2015, 16, 79–89. [Google Scholar]
- Defez, E.; Jódar, L.; Law, A. Jacobi matrix differential equation, polynomial solutions, and their properties. Comput. Math. Appl. 2004, 48, 789–803. [Google Scholar] [CrossRef]
- Jódar, L.; Sastre, J. On Laguerre matrix polynomials. Util. Math. 1998, 53, 37–48. [Google Scholar]
- Cetinkaya, A. The incomplete second Appell hypergeometric functions. Appl. Math. Comput. 2013, 219, 8332–8337. [Google Scholar] [CrossRef]
- Shehata, A. Some relations on Konhauser matrix polynomials. Miskolc Math. Notes 2016, 17, 605–633. [Google Scholar] [CrossRef]
- Duran, A.J.; Van Assche, W. Orthogonal matrix polynomials and higher order recurrence relations. Linear Algebra Appl. 1995, 219, 261–280. [Google Scholar] [CrossRef]
- Geronimo, J.S. Scattering theory and matrix orthogonal polynomials on the real line. Circ. Syst. Signal Process. 1982, 1, 471–495. [Google Scholar] [CrossRef]
- Abbas, M.I. Nonlinear Alangana-Baleanu fractional differential equations involving the Mittag–Leffler integral operator. Mem. Differ. Equ. Math. Phys. 2021, 82, 1–13. [Google Scholar]
- Shiri, B.; Baleanu, D. System of fractional differential algebraic equations with applications. Chaos Solitons Fractals 2019, 120, 203–212. [Google Scholar] [CrossRef]
- Zhang, X. The non-uniqueness of solution for initial value problem of impulsive differential equations involving higher order Katugampola fractional derivative. Adv. Differ. Equ. 2020, 2020, 85. [Google Scholar] [CrossRef]
- Bakhet, A.; Jiao, Y.; He, F. On the Wright hypergeometric matrix functions and their fractional calculus. Integral Transform. Spec. Funct. 2019, 30, 138–156. [Google Scholar]
- Duan, J.; Chen, L. Solution of fractional differential equation systems and computation of matrix Mittag—Leffler functions. Symmetry 2018, 10, 503. [Google Scholar] [CrossRef]
- Eltayeb, H.; Kiliçman, A.; Agarwal, R.P. On integral transforms and matrix functions. Abstr. Appl. Anal. 2011, 2011, 207930. [Google Scholar] [CrossRef]
- Kargin, L.; Kurt, V. Chebyshev-type matrix polynomials and integral transforms. Hacet. J. Math. Stat. 2015, 44, 341–350. [Google Scholar] [CrossRef]
- Khammash, G.S.; Agarwal, P.; Choi, J. Extended k-Gamma and k-Beta functions of matrix arguments. Mathematics 2020, 8, 1715. [Google Scholar] [CrossRef]
- Shehata, A. On Lommel Matrix Polynomials. Symmetry 2021, 13, 2335. [Google Scholar] [CrossRef]
- Shehata, A.; Subuhi, K. On Bessel-Maitland matrix function. Mathematica 2015, 57, 90–103. [Google Scholar]
- Salim, T.O. Some properties relating to the generalized Mittag–Leffler function. Adv. Appl. Math. Anal. 2009, 4, 21–30. [Google Scholar]
- Sharma, K. Application of fractional calculus operators to related areas. Gen. Math. Notes 2011, 7, 33–40. [Google Scholar]
- Shukla, A.K.; Prajapati, J.C. On a generalization of Mittag–Leffler function and its properties. J. Math. Anal. Appl. 2007, 336, 797–811. [Google Scholar] [CrossRef]
- Bose, R.C. Early History of Multivariate Statistical Analysis. In Analysis IV; Krishnaiah, P.R., Ed.; North-Holland: Amsterdam, The Netherlands, 1977; pp. 3–22. [Google Scholar]
- Jain, S.; Cattani, C.; Agarwal, P. Fractional Hypergeometric Functions. Symmetry 2022, 14, 714. [Google Scholar] [CrossRef]
- Pham-Gia, T.; Thanh, D. Hypergeometric Functions: From One Scalar Variable to Several Matrix Arguments, in Statistics and Beyond. Open J. Stat. 2016, 6, 951–994. [Google Scholar] [CrossRef]
- Saigo, M. On generalized fractional calculus operators. In Proceedings of the Recent Advances in Applied Mathematics, Kuwait City, Kuwait, 4–7 May 1996; Kuwait University Press: Kuwait City, Kuwait, 1996; pp. 441–450. [Google Scholar]
- Srivastava, H.M.; Agarwal, P. Certain Fractional Integral Operators and the Generalized Incomplete Hypergeometric Functions. Appl. Appl. Math. 2013, 8, 333–345. [Google Scholar]
- Boyadjiev, L.; Dobner, H.J. Fractional free electron laser equations. Integral Transform. Spec. Funct. 2001, 11, 113–136. [Google Scholar] [CrossRef]
- Tassaddiq, A.; Srivastava, R. New results involving the generalized Krätzel function with application to the fractional kinetic equations. Mathematics 2023, 11, 1060. [Google Scholar] [CrossRef]
- Dunford, N.; Schwartz, J. Linear Operators, Part I; Interscience: New York, NY, USA, 1957. [Google Scholar]
- Sanjhira, R.; Dwivedi, R. On the matrix function pRq(A,B;z) and its fractional calculus properties. Commun. Math. 2023, 31, 43–56. [Google Scholar]
- Folland, G.B. Fourier Analysis and Its Applications; The Wadsworth and Brooks/Cole Mathematics Series; Thomson Brooks/Cole: Belmont, CA, USA, 1992. [Google Scholar]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; North-Holland Mathematics Studies Elsevier Science B.V.: Amsterdam, The Netherlands, 2006; Volume 204. [Google Scholar]
- Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivatives; Gordon and Breach Science Publishers: Yverdon, Switzerland, 1993. [Google Scholar]
- Erkus-Duman, E.; Cekim, B. New generating functions for the Konhauser matrix polynomials. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2014, 63, 35–41. [Google Scholar] [CrossRef]
- Sanjhira, R.; Nathwani, B.V.; Dave, B.I. Generalized Mittag-Leffer matrix function and associated matrix polynomials. J. Indian Math. Soc. 2019, 86, 161–178. [Google Scholar]
- Sanjhira, R.; Dave, B.I. Generalized Konhauser matrix polynomial and its properties. Math. Stud. 2018, 87, 109–120. [Google Scholar]
- Shehata, A. A note on Konhauser matrix polynomials. Palestine J. Math. 2020, 9, 549–556. [Google Scholar]
- Varma, S.; Cekim, B.; Tasdelen, F. On Konhauser matrix polynomials. Ars Comb. 2011, 100, 193–204. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shehata, A.; Khammash, G.S.; Cattani, C. Some Relations on the rRs(P,Q,z) Matrix Function. Axioms 2023, 12, 817. https://doi.org/10.3390/axioms12090817
Shehata A, Khammash GS, Cattani C. Some Relations on the rRs(P,Q,z) Matrix Function. Axioms. 2023; 12(9):817. https://doi.org/10.3390/axioms12090817
Chicago/Turabian StyleShehata, Ayman, Ghazi S. Khammash, and Carlo Cattani. 2023. "Some Relations on the rRs(P,Q,z) Matrix Function" Axioms 12, no. 9: 817. https://doi.org/10.3390/axioms12090817
APA StyleShehata, A., Khammash, G. S., & Cattani, C. (2023). Some Relations on the rRs(P,Q,z) Matrix Function. Axioms, 12(9), 817. https://doi.org/10.3390/axioms12090817