Almost Ćirić Type Contractions and Their Applications in Complex Valued b-Metric Spaces
Abstract
:1. Introduction and Preliminaries
- (I)
- , ,
- (II)
- , ,
- (III)
- , ,
- (IV)
- , .
- (a)
- ;
- (b)
- or ;
- (c)
- or
- (a)
- If then, if
- (b)
- If then, if
- (c)
- If then, if .
- (1)
- Fix(Q) = z*;
- (2)
- For all sequence converges to z*;
- (3)
- for all
- (1)
- ;
- (2)
- For any , the Picard iteration converges to ;
- (3)
- The following estimate holds
2. Main Results
- (ii)
- Plugging L = 0 into all the above results, one can obtain the results of [29].
3. Applications
3.1. Applications to Integral-Type Contractions
- (a)
- Γ is continuous and nondecreasing.
- (b)
- Γ( iff ν = 0.
- (i)
- ℏ for each subset of , such that the subset is compact, is Lebesgue integrable.
- (ii)
- , for all .
3.2. Application to the System of Urysohn-Type Integral Equations
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Banach, S. Sur les oprations dans les ensembles abstraits et leurs applications aux equatins integrales. Fundam. Math. 1922, 3, 133–181. [Google Scholar] [CrossRef]
- Arandjelović, I.; Kadelburg, Z.; Radenović, S. Boyd-Wong-type common fixed point results in cone metric spaces. Appl. Math. Comput. 2011, 217, 7167–7171. [Google Scholar] [CrossRef]
- Bhatt, S.; Chaukiyal, S.; Dimri, R.C.A. Common fixed point theorem for weakly compatible maps in complex valued metric spaces. Int. J. Math. Sci. Appl. 2011, 1, 1385–1389. [Google Scholar]
- Latif, A.; Subaie, R.F.A.; Alansari, M.O. Fixed points of generalized multi-valued contractive mappings in metric type spaces. J. Nonlinear Var. Anal. 2022, 6, 123–138. [Google Scholar]
- Xu, W.; Yang, L. Some fixed point theorems with rational type contraction in controlled metric spaces. J. Adv. Math. Stud. 2023, 16, 45–56. [Google Scholar]
- Boyd, D.W.; Wong, J.S.W. On nonlinear contractions. Proc. Am. Math. Soc. 1969, 20, 458–464. [Google Scholar] [CrossRef]
- Dugundji, J.; Granas, A. Fixed Point Theory; Monografie Matematyczne, Tom 61; Panstwowe Wydawnictwo Naukowe (PWN—Polish Scientific Publishers): Warszawa, Poland, 1982; Volume 1, 209p. [Google Scholar]
- Tarafdar, E. An approach to fixed-point theorems on uniform spaces. Trans. Am. Math. Soc. 1974, 191, 209–225. [Google Scholar] [CrossRef]
- Shatanawi, W.; Shatnawi, T.A.M. New fixed point results in controlled metric type spaces based on new contractive conditions. AIMS Math. 2023, 8, 9314–9330. [Google Scholar] [CrossRef]
- Rezazgui, A.-Z.; Tallafha, A.A.; Shatanawi, W. Common fixed point results via Aν-α-contractions with a pair and two pairs of self-mappings in the frame of an extended quasi b-metric space. AIMS Math. 2023, 8, 7225–7241. [Google Scholar] [CrossRef]
- Joshi, M.; Tomar, A.; Abdeljawad, T. On fixed points, their geometry and application to satellite web coupling problem in S-metric spaces. AIMS Math. 2023, 8, 4407–4441. [Google Scholar] [CrossRef]
- Ćirić, L.B. Generalized contraction and fixed point theorems. Publ. Inst. Math. Nouv. Sér. 1971, 12, 19–26. [Google Scholar]
- Berinde, V. Approximation fixed points of weak contractions using the Picard iteration. Nonlinear Anal. Forum 2004, 9, 43–53. [Google Scholar]
- Banach, S. Théorie des Opérations Linéaires; Monografie Matematyczne: Warszawa, Poland, 1932. [Google Scholar]
- Chatterjea, S.K. Fixed-point theorems. Comptes Rendus Acad. Bulg. Sci. 1972, 25, 727–730. [Google Scholar] [CrossRef]
- Kannan, R. Some resulta on fixed points. Bull. Calcutta Math. Soc. 1968, 10, 71–76. [Google Scholar]
- Bakhtin, I.A. The contraction mapping principle in quasimetric spaces. Funct. Anal. 1989, 30, 6–27. [Google Scholar]
- Ege, O. Complex valued rectangular b-metric spacesand an application to linear equations. J. Nonlinear Sci. Appl. 2015, 8, 1014–1021. [Google Scholar] [CrossRef]
- Parvaneh, V.; Roshan, J.R.; Radenović, S. Existance of tripled coincidence points in order b-matric spaces and an application to system of integral equations. Fixed Point Theory Appl. 2013, 2013, 130. [Google Scholar] [CrossRef]
- Shatanawi, W.; Pitea, A.; Lazović, R. Contration conditions usingcomparison functionson b-metric spaces. Fixed Point Theory Appl. 2014, 2014, 135. [Google Scholar] [CrossRef]
- Shatanawi, W. Fixed and common fixed for mapping satisfying some nonlinear contraction in b-metric spaces. J. Math. Anal. 2016, 7, 1–12. [Google Scholar]
- Azam, A.; Fisher, B.; Khan, M. Common fixed point theorems in complex valued metric space. Numer. Funct. Anal. Optim. 2011, 32, 243–253. [Google Scholar] [CrossRef]
- Rao, K.P.R.; Swamy, P.R.; Prasad, J.R. A common fixed point theorem in complex valued b-metric spaces. Bull. Math. Stat. Res. 2013, 1, 1–8. [Google Scholar]
- Berrah, K.; Aliouche, A.; Oussaeif, T.E. Applications and theorem on common fixed point in complex valued b-metric space. AIMS Math. 2019, 4, 1019–1033. [Google Scholar] [CrossRef]
- Verma, R.K.; Pathak, H.K. Common Fixed Point Theorems Using Property (E.A) in Complex-Valued Metric Spaces. Thai J. Math. 2013, 11, 347–355. [Google Scholar]
- Zamfirescu, T. Fix point theorems in metric spaces. Arch. Math. 1972, 23, 292–298. [Google Scholar] [CrossRef]
- Miculescu, R.; Mihail, A. New fixed point theorems for set-valued contractions in b-metric spaces. J. Fixed Point Theory Appl. 2017, 19, 2153–2163. [Google Scholar] [CrossRef]
- Mitrović, Z.D. A note on the results of Suzuki, Miculescu and Mihail. J. Fixed Point Theory Appl. 2019, 21, 4. [Google Scholar] [CrossRef]
- Aslam, M.S.; Guran, L.; Saleem, N. Common Fixed Point Technique for Existence of a Solution of Urysohn Type Integral Equations System in Complex Valued b-Metric Spaces. Mathematics 2021, 9, 400. [Google Scholar] [CrossRef]
- Sintunavarat, W.; Cho, Y.J.; Kumam, P. Urysohn integral equations approach by common fixed points in complex-valued metric spaces. Adv. Differ. Equ. 2013, 2013, 49. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sarwar, M.; Shah, S.K.; Mitrović, Z.D.; Mukheimer, A.; Mlaiki, N. Almost Ćirić Type Contractions and Their Applications in Complex Valued b-Metric Spaces. Axioms 2023, 12, 794. https://doi.org/10.3390/axioms12080794
Sarwar M, Shah SK, Mitrović ZD, Mukheimer A, Mlaiki N. Almost Ćirić Type Contractions and Their Applications in Complex Valued b-Metric Spaces. Axioms. 2023; 12(8):794. https://doi.org/10.3390/axioms12080794
Chicago/Turabian StyleSarwar, Muhammad, Syed Khayyam Shah, Zoran D. Mitrović, Aiman Mukheimer, and Nabil Mlaiki. 2023. "Almost Ćirić Type Contractions and Their Applications in Complex Valued b-Metric Spaces" Axioms 12, no. 8: 794. https://doi.org/10.3390/axioms12080794
APA StyleSarwar, M., Shah, S. K., Mitrović, Z. D., Mukheimer, A., & Mlaiki, N. (2023). Almost Ćirić Type Contractions and Their Applications in Complex Valued b-Metric Spaces. Axioms, 12(8), 794. https://doi.org/10.3390/axioms12080794