Generalized Cauchy–Schwarz Inequalities and A-Numerical Radius Applications
Abstract
1. Introduction and Preliminaries
2. Main Results
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bhunia, P.; Dragomir, S.S.; Moslehian, M.S.; Paul, K. Lectures on numerical radius inequalities. In Infosys Science Foundation Series in Mathematical Sciences; Springer: Berlin/Heidelberg, Germany, 2022. [Google Scholar]
- Kittaneh, F.; Zamani, A. Bounds for A-numerical radius based on an extension of A-Buzano inequality. J. Comput. Appl. Math. 2023, 426, 115070. [Google Scholar] [CrossRef]
- Kittaneh, F.; Zamani, A. A refinement of A-Buzano inequality and applications to A-numerical radius inequalities. Linear Algebra Its Appl. 2023. [Google Scholar] [CrossRef]
- Ren, C.; Wu, D. Numerical radius inequalities for indefinite inner product space operators. Adv. Oper. Theory 2023, 8, 18. [Google Scholar] [CrossRef]
- Baklouti, H.; Namouri, S. Spectral analysis of bounded operators on semi-Hilbertian spaces. Banach J. Math. Anal. 2022, 16, 12. [Google Scholar] [CrossRef]
- Qiao, H.; Hai, G.; Bai, E. A-numerical radius and A-norm inequalities for semi-Hilbertian space operators. Linear Multilinear Algebra 2022, 70, 6891–6907. [Google Scholar] [CrossRef]
- Guesba, M.; Bhunia, P.; Paul, K. A-numerical radius inequalities and A-translatable radii of semi-Hilbert space operators. Filomat 2023, 37, 3443–3456. [Google Scholar] [CrossRef]
- Zamani, A. A-Numerical Radius and Product of Semi-Hilbertian Operators. Bull. Iran. Math. Soc. 2021, 47, 371–377. [Google Scholar] [CrossRef]
- Altwaijry, N.; Dragomir, S.S.; Feki, K. New Results on Boas-Bellman Type Inequalities in Semi-Hilbert Spaces with Applications. Axioms 2023, 12, 638. [Google Scholar] [CrossRef]
- Arias, M.L.; Corach, G.; Gonzalez, M.C. Metric properties of projections in semi-Hilbertian spaces. Integral Equ. Oper. Theory 2008, 62, 11–28. [Google Scholar] [CrossRef]
- Saddi, A. A-Normal operators in Semi-Hilbertian spaces. Aust. J. Math. Anal. Appl. 2012, 9, 1–12. [Google Scholar]
- Feki, K. Spectral radius of semi-Hilbertian space operators and its applications. Ann. Funct. Anal. 2020, 11, 929–946. [Google Scholar] [CrossRef]
- Arias, M.L.; Corach, G.; Gonzalez, M.C. Partial isometries in semi-Hilbertian spaces. Linear Algebra Appl. 2008, 428, 1460–1475. [Google Scholar] [CrossRef]
- Douglas, R.G. On majorization, factorization and range inclusion of operators in Hilbert space. Proc. Amer. Math. Soc. 1966, 17, 413–416. [Google Scholar] [CrossRef]
- Faghih-Ahmadi, M.; Gorjizadeh, F. A-numerical radius of A-normal operators in semi-Hilbertian spaces. Ital. J. Pure Appl. Math. 2016, 36, 73–78. [Google Scholar]
- Zamani, A. A-numerical radius inequalities for semi-Hilbertian space operators. Linear Algebra Appl. 2019, 578, 159–183. [Google Scholar] [CrossRef]
- Bhunia, P.; Kittaneh, F.; Paul, K.; Sen, A. Anderson’s theorem and A-spectral radius bounds for semi-Hilbertian space operators. Linear Algebra Appl. 2023, 657, 147–162. [Google Scholar] [CrossRef]
- Kittaneh, F. Numerical radius inequalities for Hilbert space operators. Studia Math. 2005, 168, 73–80. [Google Scholar] [CrossRef]
- Conde, C.; Feki, K. On some inequalities for the generalized joint numerical radius of semi-Hilbert space operators. Ricerche Mat 2021. [Google Scholar] [CrossRef]
- Altwaijry, N.; Feki, K.; Minculete, N. On Some Generalizations of Cauchy–Schwarz Inequalities and Their Applications. Symmetry 2023, 15, 304. [Google Scholar] [CrossRef]
- Al-Dolat, M.; Jaradat, I. A refinement of the Cauchy–Schwarz inequality accompanied by new numerical radius upper bounds. Filomat 2023, 37, 971–977. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Altwaijry, N.; Feki, K.; Furuichi, S. Generalized Cauchy–Schwarz Inequalities and A-Numerical Radius Applications. Axioms 2023, 12, 712. https://doi.org/10.3390/axioms12070712
Altwaijry N, Feki K, Furuichi S. Generalized Cauchy–Schwarz Inequalities and A-Numerical Radius Applications. Axioms. 2023; 12(7):712. https://doi.org/10.3390/axioms12070712
Chicago/Turabian StyleAltwaijry, Najla, Kais Feki, and Shigeru Furuichi. 2023. "Generalized Cauchy–Schwarz Inequalities and A-Numerical Radius Applications" Axioms 12, no. 7: 712. https://doi.org/10.3390/axioms12070712
APA StyleAltwaijry, N., Feki, K., & Furuichi, S. (2023). Generalized Cauchy–Schwarz Inequalities and A-Numerical Radius Applications. Axioms, 12(7), 712. https://doi.org/10.3390/axioms12070712