Generalized Cauchy–Schwarz Inequalities and A-Numerical Radius Applications
Abstract
:1. Introduction and Preliminaries
2. Main Results
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bhunia, P.; Dragomir, S.S.; Moslehian, M.S.; Paul, K. Lectures on numerical radius inequalities. In Infosys Science Foundation Series in Mathematical Sciences; Springer: Berlin/Heidelberg, Germany, 2022. [Google Scholar]
- Kittaneh, F.; Zamani, A. Bounds for A-numerical radius based on an extension of A-Buzano inequality. J. Comput. Appl. Math. 2023, 426, 115070. [Google Scholar] [CrossRef]
- Kittaneh, F.; Zamani, A. A refinement of A-Buzano inequality and applications to A-numerical radius inequalities. Linear Algebra Its Appl. 2023. [Google Scholar] [CrossRef]
- Ren, C.; Wu, D. Numerical radius inequalities for indefinite inner product space operators. Adv. Oper. Theory 2023, 8, 18. [Google Scholar] [CrossRef]
- Baklouti, H.; Namouri, S. Spectral analysis of bounded operators on semi-Hilbertian spaces. Banach J. Math. Anal. 2022, 16, 12. [Google Scholar] [CrossRef]
- Qiao, H.; Hai, G.; Bai, E. A-numerical radius and A-norm inequalities for semi-Hilbertian space operators. Linear Multilinear Algebra 2022, 70, 6891–6907. [Google Scholar] [CrossRef]
- Guesba, M.; Bhunia, P.; Paul, K. A-numerical radius inequalities and A-translatable radii of semi-Hilbert space operators. Filomat 2023, 37, 3443–3456. [Google Scholar] [CrossRef]
- Zamani, A. A-Numerical Radius and Product of Semi-Hilbertian Operators. Bull. Iran. Math. Soc. 2021, 47, 371–377. [Google Scholar] [CrossRef] [Green Version]
- Altwaijry, N.; Dragomir, S.S.; Feki, K. New Results on Boas-Bellman Type Inequalities in Semi-Hilbert Spaces with Applications. Axioms 2023, 12, 638. [Google Scholar] [CrossRef]
- Arias, M.L.; Corach, G.; Gonzalez, M.C. Metric properties of projections in semi-Hilbertian spaces. Integral Equ. Oper. Theory 2008, 62, 11–28. [Google Scholar] [CrossRef]
- Saddi, A. A-Normal operators in Semi-Hilbertian spaces. Aust. J. Math. Anal. Appl. 2012, 9, 1–12. [Google Scholar]
- Feki, K. Spectral radius of semi-Hilbertian space operators and its applications. Ann. Funct. Anal. 2020, 11, 929–946. [Google Scholar] [CrossRef] [Green Version]
- Arias, M.L.; Corach, G.; Gonzalez, M.C. Partial isometries in semi-Hilbertian spaces. Linear Algebra Appl. 2008, 428, 1460–1475. [Google Scholar] [CrossRef] [Green Version]
- Douglas, R.G. On majorization, factorization and range inclusion of operators in Hilbert space. Proc. Amer. Math. Soc. 1966, 17, 413–416. [Google Scholar] [CrossRef]
- Faghih-Ahmadi, M.; Gorjizadeh, F. A-numerical radius of A-normal operators in semi-Hilbertian spaces. Ital. J. Pure Appl. Math. 2016, 36, 73–78. [Google Scholar]
- Zamani, A. A-numerical radius inequalities for semi-Hilbertian space operators. Linear Algebra Appl. 2019, 578, 159–183. [Google Scholar] [CrossRef] [Green Version]
- Bhunia, P.; Kittaneh, F.; Paul, K.; Sen, A. Anderson’s theorem and A-spectral radius bounds for semi-Hilbertian space operators. Linear Algebra Appl. 2023, 657, 147–162. [Google Scholar] [CrossRef]
- Kittaneh, F. Numerical radius inequalities for Hilbert space operators. Studia Math. 2005, 168, 73–80. [Google Scholar] [CrossRef] [Green Version]
- Conde, C.; Feki, K. On some inequalities for the generalized joint numerical radius of semi-Hilbert space operators. Ricerche Mat 2021. [Google Scholar] [CrossRef]
- Altwaijry, N.; Feki, K.; Minculete, N. On Some Generalizations of Cauchy–Schwarz Inequalities and Their Applications. Symmetry 2023, 15, 304. [Google Scholar] [CrossRef]
- Al-Dolat, M.; Jaradat, I. A refinement of the Cauchy–Schwarz inequality accompanied by new numerical radius upper bounds. Filomat 2023, 37, 971–977. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Altwaijry, N.; Feki, K.; Furuichi, S. Generalized Cauchy–Schwarz Inequalities and A-Numerical Radius Applications. Axioms 2023, 12, 712. https://doi.org/10.3390/axioms12070712
Altwaijry N, Feki K, Furuichi S. Generalized Cauchy–Schwarz Inequalities and A-Numerical Radius Applications. Axioms. 2023; 12(7):712. https://doi.org/10.3390/axioms12070712
Chicago/Turabian StyleAltwaijry, Najla, Kais Feki, and Shigeru Furuichi. 2023. "Generalized Cauchy–Schwarz Inequalities and A-Numerical Radius Applications" Axioms 12, no. 7: 712. https://doi.org/10.3390/axioms12070712
APA StyleAltwaijry, N., Feki, K., & Furuichi, S. (2023). Generalized Cauchy–Schwarz Inequalities and A-Numerical Radius Applications. Axioms, 12(7), 712. https://doi.org/10.3390/axioms12070712