Existence, Uniqueness and the Multi-Stability Results for a -Hilfer Fractional Differential Equation
Abstract
1. Introduction
2. Preliminaries
2.1. On Fractional Derivatives
2.2. On the Alternative Theory
2.3. On Aggregation Maps and Special Functions
- (i)
- it is nondecreasing in each variable;
- (ii)
- it satisfies the boundary conditions
- The geometric mean function and the arithmetic mean function are, respectively, given by
- For every the projection function and the order statistic function related to the argument, are correspondingly given bywhere is the lowest coordinate of y:The projections onto the first and the last coordinates are given byLikewise, the extreme order statistics and are correspondingly the minimum and maximum functionswhich will be written through the operations ∨ and ∧, respectively:Similarly, the median of odd numbers of values is simply given byFor an even number of values the median is given byFor every we also define the -median, by
- For every the partial minimum and the partial maximum associated with K, are, respectively, given by
- For every weight vector s.t. the weighted arithmetic mean functionand the ordered weighted averaging function associated with , are, respectively, given by
- The sum and product functions are correspondingly given by
- The one-parameter Mittag-Leffler function [20],in which and
3. Existence, Uniqueness and Multi-Stability
4. Example
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Aderyani, S.R.; Saadati, R. Stability and controllability results by n-ary aggregation functions in matrix valued fuzzy n-normed spaces. Inf. Sci. 2023, 643, 119265. [Google Scholar] [CrossRef]
- Kurač, Z. Transfer-stable aggregation functions: Applications, challenges, and emerging trends. Decis. Anal. J. 2023, 7, 100210. [Google Scholar] [CrossRef]
- Halaš, R.; Mesiar, R.; Pócs, J. On the number of aggregation functions on finite chains as a generalization of Dedekind numbers. Fuzzy Sets Syst. 2023, 466, 108441. [Google Scholar] [CrossRef]
- Ulam, S.M. Problem in Modern Mathematics; Science Editors; Willey: New York, NY, USA, 1960. [Google Scholar]
- Hyers, D.H. On the stability of linear functional equation. Proc. Natl. Acad. Sci. USA 1924, 27, 222–224. [Google Scholar] [CrossRef]
- Rassia, T.M. On the stability of the linear mapping in Banach spaces. Proc. Am. Math. Soc. 1978, 72, 297–300. [Google Scholar] [CrossRef]
- Alsina, C.; Ger, R. On some inequalities and stability results related to the exponential function. J. Inequal. Appl. 1998, 2, 373–380. [Google Scholar] [CrossRef]
- Algifiary, Q.H.; Jung, S. Laplace transform and generalized Hyers-Ulam stability of linear differential equation. Electron. J. Differ. Equ. 2014, 2014, 1–11. [Google Scholar]
- Razaei, H.; Jung, S.; Rassias, T.M. Laplace transform and Hyers-Ulam stability of linear differential equation. J. Math. Anal. Appl. 2013, 403, 244–251. [Google Scholar] [CrossRef]
- Wu, G.; Baleanu, D. Stability analysis of impulsive fractional difference equations. Fract. Calc. Appl. Anal. 2018, 21, 354–375. [Google Scholar] [CrossRef]
- Wu, G.; Baleanu, D.; Huang, L. Novel Mittag-Leffler stability of linear fractional delay difference equations with impluse. Appl. Math. Lett. 2018, 82, 71–78. [Google Scholar] [CrossRef]
- Wu, G.; Abdeljawad, T.; Liu, J.; Baleanu, D.; Wu, K. Mittag-Leffler stability analysis of fractional discrete-time neural networks via fixed point technique. Nonlinear Anal. Model. Control 2019, 24, 919–936. [Google Scholar] [CrossRef]
- Srivastava, H.M.; da Costa Sousa, J.V. Multiplicity of Solutions for Fractional-Order Differential Equations via the κ(x)-Laplacian Operator and the Genus Theory. Fractal Fract. 2022, 6, 481. [Google Scholar] [CrossRef]
- Mihet, D. On the stability of the additive Cauchy functional equation in random normed spaces. Appl. Math. Lett. 2011, 24, 2005–2009. [Google Scholar] [CrossRef]
- Park, C. Stability of some set-valued functional equations. Appl. Math. Lett. 2011, 24, 1910–1914. [Google Scholar] [CrossRef]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Diaz, J.B.; Margolis, B. A fixed point theorem of the alternative, for contractions on a generalized complete metric space. Bull Amer Math Soc. 1968, 74, 305–309. [Google Scholar] [CrossRef]
- Rezaei Aderyani, S.; Saadati, R.; Li, C.; Rassias, T.M.; Park, C. Special functions and multi-stability of the Jensen type random operator equation in C*-algebras via fixed point. J. Inequalities Appl. 2023, 2023, 35. [Google Scholar] [CrossRef]
- Grabisch, M.; Marichal, J.L.; Mesiar, R.; Pap, E. Aggregation Functions; Cambridge University Press: Cambridge, MA, USA, 2009; Volume 127. [Google Scholar]
- Harikrishnan, S.; Elsayed, E.M.; Kanagarajan, K.; Vivek, D. A study of Hilfer-Katugampola type pantograph equations with complex order. Ex. Counterexamples 2022, 2, 100045. [Google Scholar] [CrossRef]
- Li, C.; Nonlaopon, K.; Hrytsenko, A.; Beaudin, J. On the analytic and approximate solutions for the fractional nonlinear Schrödinger equations. J. Nonlinear Sci. Appl. 2023, 16, 51–59. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aderyani, S.R.; Saadati, R.; Rassias, T.M.; Srivastava, H.M.
Existence, Uniqueness and the Multi-Stability Results for a
Aderyani SR, Saadati R, Rassias TM, Srivastava HM.
Existence, Uniqueness and the Multi-Stability Results for a
Aderyani, Safoura Rezaei, Reza Saadati, Themistocles M. Rassias, and Hari M. Srivastava.
2023. "Existence, Uniqueness and the Multi-Stability Results for a
Aderyani, S. R., Saadati, R., Rassias, T. M., & Srivastava, H. M.
(2023). Existence, Uniqueness and the Multi-Stability Results for a
