Next Article in Journal
Existence, Uniqueness and the Multi-Stability Results for a W-Hilfer Fractional Differential Equation
Next Article in Special Issue
Bayesian and Non-Bayesian Estimation for a New Extension of Power Topp–Leone Distribution under Ranked Set Sampling with Applications
Previous Article in Journal
Head Waves in Modified Weiskopf Sandy Medium
Previous Article in Special Issue
A Strong Limit Theorem of the Largest Entries of a Sample Correlation Matrices under a Strong Mixing Assumption
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

On Estimation of Reliability Functions for the Extended Rayleigh Distribution under Progressive First-Failure Censoring Model

by
Mahmoud Hamed Abu-Moussa
1,*,
Najwan Alsadat
2 and
Ali Sharawy
3
1
Department of Mathematics, Faculty of Science, Cairo University, Giza 12613, Egypt
2
Department of Quantitative Analysis, College of Business Administration, King Saud University, P.O. Box 71115, Riyadh 11587, Saudi Arabia
3
Department of Mathematical and Natural Sciences, Faculty of Engineering, Egyptian Russian University, Badr 11829, Egypt
*
Author to whom correspondence should be addressed.
Axioms 2023, 12(7), 680; https://doi.org/10.3390/axioms12070680
Submission received: 23 May 2023 / Revised: 3 July 2023 / Accepted: 5 July 2023 / Published: 10 July 2023
(This article belongs to the Special Issue Probability, Statistics and Estimation)

Abstract

:
When conducting reliability studies, the progressive first-failure censoring (PFFC) method is useful in situations in which the units of the life testing experiment are separated into groups consisting of k units each with the intention of seeing only the first failure in each group. Using progressive first-failure censored samples, the statistical inference for the parameters, reliability, and hazard functions of the extended Rayleigh distribution (ERD) are investigated in this study. The asymptotic normality theory of maximum likelihood estimates (MLEs) is used in order to acquire the maximum likelihood estimates (MLEs) together with the asymptotic confidence intervals (Asym. CIs). Bayesian estimates (BEs) of the parameters and the reliability functions under different loss functions may be produced by using independent gamma informative priors and non-informative priors. The Markov chain Monte Carlo (MCMC) approach is used so that Bayesian computations are performed with ease. In addition, the MCMC method is used in order to create credible intervals (Cred. CIs) for the parameters, which may be used for either informative or non-informative priors. Additionally, computations for the reliability functions are carried out. A Monte Carlo simulation study is carried out in order to provide a comparison of the behaviour of the different estimations that were created for this work. At last, an actual data set is dissected for the purpose of providing an example.

1. Introduction

The vast majority of contemporary things are constructed to continue functioning well over a lengthy period of time. Therefore, more time and money are required for dependability tests to be conducted in the conditions of typical operation. Under normal conditions, lifetime experiments with a set testing time have exceptionally low failure rates. Because of the expense and amount of time necessary for life testing experiments, the experimenter is compelled to end the experiment before monitoring any failures. As a result, data filtering methods are often utilised in order to cut down on the consumed time and money spent on testing. The classic Type-I and Type-II censoring schemes are the ones that are most commonly used for laboratory examinations. However, the progressive Type-II censoring scheme is the one that is utilised the most frequently in CS.
The primary distinction between Type-I and Type-II CSs is that a Type-I CS is determined by the time at which the experiment is terminated, while a Type-II CS is determined by the number of unsuccessful attempts. There is no way until the very conclusion of the test that the test units from these two CSs may be removed from consideration. The Type-II censoring procedure may be expanded into a progressive Type-II (PT-II) censoring procedure. It encourages the person doing the experiment to remove the units being tested at a variety of points during the test. For additional reading about PT-II CS, we may refer to [1,2].
Several researchers have developed a kind of life test in which the experimenter has the option of dividing the test units up into several groups, each of which functions as a collection of test units. Then, all of the test units are put through their paces concurrently until one of the groups experiences a failure. One name for this kind of censorship strategy is “first-failure censoring”. It was first developed by [3]. Different studies have been conducted under the concept of first-failure censoring, such as [4,5].
Wu and Kus [6] developed the PFFCS as a hybrid of the first-failure censoring scheme and the progressive Type-II censoring scheme. Recently, most articles have focused on the study and analysis of the PFFCS and system reliability; see [7,8,9,10,11,12,13,14].
Almongy et al. [15] proposed the extended Rayleigh distribution (ERD) with three parameters to model and analyze the mortality rate of COVID-19. It combines the extended odd Weibull family and the Rayleigh distribution. The proposed distribution has great merits that qualify it to model skewed data. For a lifetime random variable t following the ERD, the probability density function (PDF), survival function (SF), and hazard rate function (HRF) are given as follows:
f ( t ) = 2 α δ t e δ t 2 e δ t 2 1 α 1 β e δ t 2 1 α + 1 1 β 1 , t > 0 , α , β , δ > 0 ,
S ( t ) = 1 F ( t ) = β e δ t 2 1 α + 1 1 / β , t > 0 ,
and
h ( t ) = 2 α δ t e δ t 2 e δ t 2 1 α 1 β e δ t 2 1 α + 1 , t > 0 ,
where α and β are positive shape parameters, while δ is a positive scale parameter. Figure 1 shows the behavour of the pdf, sf, and hf of the ERD for different values of parameters.
The innovations, guidance, and encouragement that led to the writing of this article were aimed at making a statistical inference on the extended odd Weibull Rayleigh distribution or extended Rayleigh distribution (ERD) as a suitable fit for lifespan models with escalating, descending, and bathtub failure rates. The purpose of this inference was to determine whether or not the distribution is a good fit for the data, so the main contribution of the method proposed in this article is to develop techniques of parameter estimation based on progressive first-failure censored data to obtain the following:
  • Obtaining the maximum likelihood estimates of the parameters and the reliability functions.
  • Obtaining the Bayesian estimates of the parameters and the reliability functions based on four different loss functions based on both informative Gamma priors and non-informative priors.
  • As a method for coming up with a close approximation of Bayesian estimates, the Markov chain Monte Carlo (MCMC) procedure is used.
  • Based on the MLEs, the approximate confidence intervals for both the parameters and the reliability functions is constructed.
  • Based on the Bayesian estimates, the credible confidence intervals for both the parameters and the reliability functions are also constructed.
  • Comprehensive simulation research is carried out. We determine whether or not the offered estimation methods are comparable to one another.
  • Lastly, in terms of real-world applications, the ERD shows that it is effective for fitting real-world lifetime data
The primary goal of this paper is to concentrate on the difficulty of estimating the parameters of the PFFC life testing model under the ERD failure time distribution. The remainder of this article is structured as follows. Section 2 describes the paradigm and formulation of the PFFC system. The ML estimates and Asym. CI for the parametrs and also for the reliability and hazard functions of ERD, depending on the PFFCS, are established in Section 3. Section 4 discusses the BEs and their MCMC approximations with the corresponding credible intervals based on different loss functions as squared error (SEL), linear–exponential (LINEX), generalized entropy (GEL), and Al-Bayatti loss function (ALB). Section 5 provides an actual numerical example using a real data set. In Section 6, we present a simulation study to evaluate the performance and the efficiency of the estimation techniques. Finally, Section 7 brings the paper to a conclusion.

2. Model Formulation

In life testing experiments and reliability studies, the experiments may be operated on groups of objects and only the first failure encountered in a group. This concept of PFFCS was first considered by Wu and Kus [6]. It can be described as follows: assume n independent groups, each one with k items, subjected to a lifetime test. At the occurrence of the first failure X 1 : m : n : k , R 1 of the surviving groups are removed randomly from the test together with the remaining k 1 items of the group that includes the first-failure item. At the occurrence of the second failure X 2 : m : n : k , R 2 of the surviving groups are removed randomly from the test together with the remaining k 1 items of the group that contains the second failure item, and so on until the mth failure occurs X m : m : n : k , with m < n . At this time, R m of the surviving groups are removed randomly from the test together with the remaining k 1 items of the group that includes the mth failure item. The resulting progressive first-failure censored sample is X 1 : m : n : k < X 2 : m : n : k < < X m : m : n : k with censoring scheme ( R 1 , R 2 , , R m ) ; it can be denoted by PFFCS. Suppose that f ( x , Θ ) and F ( x , Θ ) are the PDF and CDF, respectively, that fit the PFFCS; then, the joint PDF of ( X 1 : m : n : k , X 2 : m : n : k , , X m : m : n : k ) = ( x 1 , x 2 , , x m ) can be formed as follows
L ( Θ | X ) = C k m i = 1 m f ( x i ) 1 F ( x i ) k ( R i + 1 ) 1 ,
where C = n ( n R 1 1 ) ( n R 1 R 2 2 ) ( n R 1 R 2 R m 1 m + 1 ) .
It is very important to note that the PFF model is a generalized model for different sub-models, see Table 1.

3. Maximum Likelihood Estimation

In this section, the MLEs for the parameters α , β , and δ are carried out. Using the invariant property, the MLEs for the reliability functions S ( t ) and h ( t ) are also obtained. ML is an easy method for estimating unknow parameters that has been used by several authors in the literature; see, for example, [16,17,18].
L α , β , δ ; x ̲ = α m δ m e δ i = 1 m x i 2 i = 1 m x i e δ x i 2 1 α 1 β e δ x i 2 1 α + 1 β + k R i + 1 β
Using (5), the log-likelihood function is obtained as follows
l = ( α 1 ) i = 1 m log e δ x i 2 1 + δ i = 1 m x i 2 + i = 1 m log x i + m ( log ( α ) + log ( δ ) ) i = 1 m β + k R i + 1 log β e δ x i 2 1 α + 1 β
Applying the partial derivative to (6) with respect to α , β , and δ and equating it to zero, we get:
1 β · i = 1 m β β + k R i + 1 e δ x i 2 1 α log e δ x i 2 1 β e δ x i 2 1 α + 1 + i = 1 m log e δ x i 2 1 + m α = 0 ,
1 β 2 · i = 1 m β + k R i + 1 log β e δ x i 2 1 α + 1 β i = 1 m β + k R i + 1 e δ x i 2 1 α β e δ x i 2 1 α + 1 + log β e δ x i 2 1 α + 1 = 0 ,
and
1 β · i = 1 m α β x i 2 e δ x i 2 β + k R i + 1 e δ x i 2 1 α 1 β e δ x i 2 1 α + 1 + ( α 1 ) i = 1 m x i 2 e δ x i 2 e δ x i 2 1 + i = 1 m x i 2 + m δ = 0 .
Now to get the estimates α ^ , β ^ , and δ ^ , (7), (8) and (9) are solved depending on the Newton–Raphson method.

3.1. Asymptotic Confidence Intervals for the Parameters

The asymptotic CIs are built in this subsection based on the asymptotic Fisher information matrix for the parameters γ , β , and  δ and is given as follows:
I ( α ^ , β ^ , δ ^ ) = 2 α 2 2 α β 2 α δ 2 β α 2 β 2 2 β δ 2 δ α 2 δ β 2 δ 2 | α = α ^ , β = β ^ , δ = δ ^
      Now, the  100 ( 1 γ ) % two-sided asymptotic CIs for the parameters α , β , and δ are obtained as follows:
α ^ z γ / 2 V ^ α ^ , α ^ + z γ / 2 V ^ α ^ ,
β ^ z γ / 2 V ^ β ^ , β ^ + z γ / 2 V ^ β ^ ,
and
δ ^ z γ / 2 V ^ δ ^ , δ ^ + z γ / 2 V ^ δ ^ ,
where V ^ α ^ , V ^ β ^ , and V ^ δ ^ are the estimated values for the variances of α ^ , β ^ , and δ ^ , which are the diagonal elements of the inverse matrix of (10), and z γ / 2 is the upper γ / 2 percentile of a standard normal distribution.

3.2. Approximate Confidence Intervals for S ( t ) and h ( t )

In this subsection, the delta method suggested by [19] is used to construct the approximate confidence intervals for both the survival and hazard functions. The delta method is a general technique for establishing confidence intervals for the functions of the MLE for which it is too complicated to calculate the variance analytically. It first approximates the function linearly and then computes the variance of the more straightforward linear function that might be applied to large-scale inference; see [19,20].
G 1 = S ( t ) α S ( t ) β S ( t ) δ and G 2 = h ( t ) α h ( t ) β h ( t ) δ
where
S ( t ) α = e δ t 2 1 α log e δ t 2 1 β e δ t 2 1 α + 1 β + 1 β , S ( t ) β = β e δ t 2 1 α + 1 1 / β log β e δ t 2 1 α + 1 β 2 e δ t 2 1 α β β e δ t 2 1 α + 1 , S ( t ) δ = α t 2 e δ t 2 e δ t 2 1 α 1 β e δ t 2 1 α + 1 1 β 1 .
h ( t ) α = 2 δ t e δ t 2 e δ t 2 1 α 1 β e δ t 2 1 α + α log e δ t 2 1 + 1 β e δ t 2 1 α + 1 2 , h ( t ) β = 2 α δ t e δ t 2 e δ t 2 1 2 α 1 β e δ t 2 1 α + 1 2 , h ( t ) δ = 2 α t e δ t 2 e δ t 2 1 α 2 δ t 2 + 1 β e δ t 2 1 α 1 + e δ t 2 β e δ t 2 1 α + α δ t 2 + 1 β e δ t 2 1 α + 1 2 .
Now the approximated estimates for V ^ S ^ t and V ^ h ^ t are derived, respectively, as
V ^ S ^ t G 1 I 1 α , β , δ G 1 α ^ M L , β ^ M L , δ ^ M L , V ^ h ^ t G 2 I 1 α , β , δ G 2 α ^ M L , β ^ M L , δ ^ M L ,
where G i is the transpose of G i , i = 1 , 2 . These findings provide approximate confidence intervals for S ( t ) and h ( t ) as follows:
S ^ ( t ) z γ / 2 V ^ S ^ ( t ) , S ^ ( t ) + z γ / 2 V ^ S ^ ( t )
and
h ^ t z γ / 2 V ^ h ^ t , h ^ t + z γ / 2 V ^ h ^ t .

4. Bayesian Estimation

In this section, the Bayesian estimators of the parameters α , β , and δ using SEL, LINEX, GEL, and ALB are obtained. Readers can find more about the loss function in [21]. For the aim of deriving the Bayesian estimation, we supposed that the parameters α , β , and  δ are distributed independently with gamma priors having scale parameters b i and shape parameters a i , i = 1 , 2 , 3 , respectively. The jointly prior density of α , β , and  δ can be written as follows:
π α , β , δ α a 1 1 β a 2 1 δ a 3 1 exp b 1 α b 2 β b 3 δ , a i , b i > 0 , for i = 1 , 2 , 3 .
The posterior density function of α , β , and δ is given from (5) and (20) as follows.
π * α , β , δ | x ̲ = I 1 β a 2 1 α a 1 + m 1 δ a 3 + m 1 e α b 1 β b 2 b 3 δ e δ i = 1 m x i 2 × i = 1 m x i e δ x i 2 1 α 1 β e δ x i 2 1 α + 1 β + k R i + 1 β ,
where I is the constant of normalization, which is given as follows:
I = 0 0 0 β a 2 1 α a 1 + m 1 δ a 3 + m 1 e α b 1 β b 2 b 3 δ e δ i = 1 m x i 2 × i = 1 m x i e δ x i 2 1 α 1 β e δ x i 2 1 α + 1 β + k R i + 1 β d α d β d δ
Now, the BE for any function g ( α , β , δ ) under the SEL function is the posterior mean of g and is given by:
g ^ ( α , β , δ ) B S = E ( g ( α , β , δ ) | x ̲ ) 0 0 0 g ( α , β , δ ) π * ( α , β , δ | x ̲ ) d α d β d δ .
The BE based on the LINEX loss function is given as follows:
g ^ ( α , β , δ ) B L = 1 h log E ( e h g ( α , β , δ ) | x ̲ ) 1 h log 0 0 0 e h g ( α , β , δ ) π * ( α , β , δ | x ̲ ) d α d β d δ ,
while the BE under GEL is given by:
g ^ ( α , β , δ ) B G = E ( g q ( α , β , δ ) | x ̲ ) 1 / q 0 0 0 g q ( α , β , δ ) π * ( α , β , δ | x ̲ ) d α d β d δ 1 / q .
Finally, the BE under the Al-Bayyatti loss function (ALB), which was introduced by Al-Bayyati [22], is given by:
g ^ ( α , β , δ ) B B = E ( g c + 1 ( α , β , δ ) | x ̲ ) E ( g c ( α , β , δ ) | x ̲ ) 0 0 0 g c + 1 ( α , β , δ ) π * ( α , β , δ | x ̲ ) d α d β d δ 0 0 0 g c ( α , β , δ ) π * ( α , β , δ | x ̲ ) d α d β d δ .
Unfortunately, based on (23), (24), (25), and (26), it is not easy to obtain the BEs in an explicit form, so approximation methods such as MCMC are recommended. In the following subsection, MCMC is described in order to approximate the BEs.

4.1. Markov Chain Monte Carlo Technique

Now, using the posterior distribution in (21), the conditional posterior distributions π 1 * ( α | β , δ ; x ̲ ) , π 2 * ( β | α , δ ; x ̲ ) , and π 3 * ( δ | α , β ; x ̲ ) of the parameters can be derived and written, respectively, as follows:
π 1 * ( α | β , δ ; x ̲ ) α a 1 + m 1 e α ( b 1 ) i = 1 m e δ x i 2 1 α β e δ x i 2 1 α + 1 β + k R i k β ,
π 2 * ( β | α , δ ; x ̲ ) β a 2 1 e β ( b 2 ) i = 1 m β e δ x i 2 1 α + 1 β + k R i k β ,
and
π 3 * ( δ | α , β ; x ̲ ) δ a 3 + m 1 e δ i = 1 m x i 2 b 3 i = 1 m e δ x i 2 1 α 1 β e δ x i 2 1 α + 1 β + k R i k β .
Because the conditional distributions in (27), (28), and (29) are not recognised, the Metropolis–Hastings sampler developed in Metropolis et al. [23] can be used to generate samples of ( α , β , δ ) within the MCMC Algorithm 1.
Algorithm 1 MCMC Technique.
  • Step 1 Start with Θ ( 0 ) = ( α ^ M L , β ^ M L , δ ^ M L ) , which are the start values for the vector Θ = ( α , β , δ ) .
  • Step 2 Set i = 1 .
  • Step 3 Generate a proposal θ k * , k = 1 , 2 , 3 from N ( θ k ( i 1 ) , V ^ ( θ k ^ ) ) , where θ 1 α , θ 2 β , and θ 3 δ .
  • Step 4 Determine the acceptance ratio ρ θ k = m i n 1 , π k * ( θ k * | x ̲ ) π k * ( θ k ( i 1 ) | x ̲ ) , k = 1 , 2 , 3 .
  • Step 5 Generate a uniform ( 0 , 1 ) value, say u; if  u ρ θ k , set θ k ( i ) = θ k * ; else, set θ k ( i ) = θ k ( i 1 ) .
  • Step 6 Put i = i + 1 .
  • Step 7 Repeat Steps 3–6 N times to get α ( i ) , β ( i ) , δ ( i ) , i = 1 , 2 , , N .
Assume g α , β , δ is a function of parameters; then, the MCMC approximation for the BEs of g depend on the MCMC generated values α ( i ) , β ( i ) , δ ( i ) , where i = B + 1 , B + 2 , , N (B is the burn-in period), are carried out under SEL, LINEX, GEL, and ALB loss functions, respectively, as follows:
g ^ ( α , β , δ ) B S = 1 N B i = B + 1 N g ( α ( i ) , β ( i ) , δ ( i ) ) ,
g ^ ( α , β , δ ) B L = 1 h log 1 N B i = B + 1 N exp { h g ( α ( i ) , β ( i ) , δ ( i ) ) } ,
g ^ ( γ , β , δ ) B E = 1 N B i = B + 1 N [ g ( γ ( i ) , β ( i ) , δ ( i ) ) ] q 1 / q .
g ^ ( γ , β , δ ) B B = i = B + 1 N [ g ( γ ( i ) , β ( i ) , δ ( i ) ) ] c + 1 i = B + 1 N [ g ( γ ( i ) , β ( i ) , δ ( i ) ) ] c .

4.2. Bayesian Credible Intervals

The 100 ( 1 γ ) % Bayesian credible CI for a parameter θ , where θ is α , β or δ , is extracted from (34),
L U π * ( θ | x ̲ ) d θ = 1 γ .
where L and U are the lower and upper bounds, respectively, of the credible CI.
Since the integral in (34) is analytically complicated, the MCMC approximation for the credible intervals is used using the ( N B ) generated values for the parameters. By sorting the generated values in an ascending order as follows, α ( B + 1 ) , α ( B + 2 ) , , γ ( N ) , β ( B + 1 ) , β ( B + 2 ) , , β ( N ) and δ ( B + 1 ) , δ ( B + 2 ) , , δ ( N ) , then the 100 ( 1 γ ) % are given as follows:
( α ( w 1 ) , α ( w 2 ) ) , ( β ( w 1 ) , β ( w 2 ) ) , and ( δ ( w 1 ) , δ ( w 2 ) ) , where w 1 = ( ( N B ) γ / 2 ) and w 2 = ( ( N B ) ( 1 γ / 2 ) ) .

5. Real Data Application

For the aim of illustrating the proposed methods, a real data set is analyzed under progressive first-failure censoring. The data come from a clinical trial; it represents relief time (hours) for 50 arthritic patients. It was introduced by Wingo [24]. The data are randomly decomposed into 25 groups, each with k = 2 items, and the first failure is observed; then, the resulting complete failures of the 25 groups are given in Table 2.
For proving that ERD is a good fit for the data, the Kolmogorov–Smirnov goodness-of-fit test is executed based on the complete data; the resulting p-value is 0.887 with MLES α = 1.6249 , δ = 1.844 , and β = 0.234 . Figure 2a shows the difference between the empirical distribution of data and the ERD distribution function, while Figure 2b shows the quantile plot for the data (Q-Q plot).
Now, for the purpose of illustrating the proposed methods of estimation, three random PFFC samples are generated from the complete data using m = 15 observations with their corresponding censoring schemes, as shown in Table 3. The MLEs and BEs for informative and non-informative priors of the parameters, survival function S ( t = 0.6 ) , and the hazard function H ( t = 0.6 ) for the real data are presented in Table 4. Table 5 presents also the Bayesian estimates for the parameters based on other values for the hyperparameters ( h , q , c ) related to the loss functions. The bounds of the asymptotic and credible intervals of the parameters and reliability functions S and H are presented in Table 6. Figure 3 shows the MCMC iteration and the marginal posterior distributions of α , β , and δ for sample S 1 . It is obvious that the marginal posterior distributions are normally distributed. Figure 4, Figure 5 and Figure 6 show the differences between the estimates of MLEs and BEs for different loss functions with different hyperparameters for α , β , and δ , respectively.

6. Simulation Study

In this section, the effeciency and performance of the proposed techniques of estimation are compared using a study of a Monte Carlo simulation. Comparisons are carried out via the average estimates (AEs) and the mean square error (MSE). Furthermore, the average widths (AWs) and coverage probabilities (CPs) of the proposed CIs are compared. The simulation study is started by choosing the true values of the parameters, which are α = 1.5 , β = 0.8 , and δ = 0.5 . We utilize the algorithm proposed by Balakrishnan and Aggarwala [1] to produce PFFC samples from the ERD based on the fact that the PFFC samples with distribution function F ( x ) can be considered as a progressive Type-II censored sample obtained from a distribution function 1 ( 1 F ( x ) ) k . Since there are n groups and k items in each group, we assume that the total number of items used in a life test is equal to n k . Only m observations are obtained from the test using a PFFCS strategy. A total of 1000 progressive Type-II censored samples are produced, with ( n , m ) = ( 30 , 20 ) , ( 50 , 30 ) , ( 80 , 50 ) using three different schemes of censoring:
  • Scheme 1: R 1 = n m and R i = 0 if i = 2 , 3 , , m .
  • Scheme 2: R i = 1 if i = 1 , 2 , , n m ; otherwise, R i = 0 .
  • Scheme 3: R i = 0 if i = 1 , 2 , 3 , , m 1 ; R m = n m .
We assume that informative gamma priors are used with the following values of hyperparameters: ( a 1 , b 1 ) = ( 45 , 30 ) , ( a 2 , b 2 ) = ( 12.8 , 16 ) , and ( a 3 , b 3 ) = ( 5 , 10 ) . The hyperparameters for the LINEX, GEL, and ALB loss functions are chosen to be ( h , q , c ) = ( 0.5 , 0.5 , 0.5 ) , respectively. The MCMC algorithm is repeated 10,000 times with a burn-in period of 2000.
Table 7, Table 8 and Table 9 show the AEs and MSEs for the parameter estimates α ^ , β ^ , and δ ^ , respectively, with various values of n and different CSs. Table 10 and Table 11 show the AEs and MSEs for the different estimates of the reliability functions S ( t = 1.5 ) and h ( t = 1.5 ) , respectively. The average widths (AWs) and coverage probabilites (CPs) for 95 % asym. CIs, informative–credible, and non-informative–credible CIs of the parameters are presented in Table 12. The results related to the AWs and Cps for S ( t = 1.5 ) and h ( t = 1.5 ) are obtained in Table 13.

7. Conclusions

Censoring is an ongoing occurrence in life testing and reliability research, so Balasooriya [3] stated that in a case for which a product’s lifetime is fairly long and test facilities are rare but test material is reasonably inexpensive, k n units can be tested by testing n sets, each of which contains k units. A censoring technique such as this is known as a first-failure censoring scheme. Wu and Kus [6] created a novel life-test strategy termed a PFFCS plan by combining first-failure censoring with progressive censoring. In this article, we looked at the maximum likelihood and Bayes estimates for some survival time parameters, the reliability function, and the hazard function for the ERD using a progressive first-failure censored scheme. In addition, we established asymptotic and credible confidence intervals for the ERD parameters as well as the reliability function and the hazard function. A simulation study and a real-world application were carried out to analyse and compare the performance of the proposed approaches for various sample sizes and censoring schemes. Based on the results obtained from the simulation, we notice the following:
  • With increasing sample sizes, the accuracy of the various point and interval estimations improves.
  • In most cases, the MSEs for all estimates based on PFFCS with k = 3 are similar to those for PFFCS with k = 2.
  • According to the MSE, BEs with informative priors are more accurate than MLEs.
  • BEs with non-informative priors perform worse than those with informative priors.
  • MLEs outperform BEs with non-informative priors in certain instances, underscoring the importance of selecting the prior distribution of target parameters.
  • In most cases, as h tends to zero, the MSEs for the BEs under the MCMC method under the LINEX loss function are the lowest for all estimates.
  • The Censoring Schemes 1 and 3, in which the censored units are permitted at the beginning and the end of the experiment, respectively, may raise the precision of the estimates.
  • As sample size increases, the AWs of different CIs falls.
  • The smallest average widths and the highest coverage probabilities of the credible CIs exist for informative priors comparing Asym. CIs and non-informative priors.
  • The PFFCS with k = 3 produces the best results for the AW and CP of the various CIs.
Finally, we may conclude that statistical inference for reliability studies is feasible and effective when using the progressive first-failure censored method.

Author Contributions

Conceptualization, N.A. and A.S.; methodology, M.H.A.-M., N.A. and A.S.; software, M.H.A.-M.; validation, M.H.A.-M. and A.S.; writing—review and editing, M.H.A.-M., N.A. and A.S.; visualization, M.H.A.-M.; funding acquisition, N.A. All authors have read and agreed to the published version of the manuscript.

Funding

This research is supported by researchers supporting project number (RSPD2023R548), King Saud University, Riyadh, Saudi Arabia.

Data Availability Statement

The data used in this paper is available in [24].

Conflicts of Interest

The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:
ALBAl-Bayatti loss function
AEaverage estimate of the parameter
AWaverage width of the proposed confidence intervals
Asym. CIasymptotic confidence interval
BEBayesian estimate in general
BSBayesian estimate based on SEL loss function
BLBayesian estimate based on LINEX loss function
BGBayesian estimate based on GEL loss function
BBBayesian estimate based on ALB loss function
Cred. CIcredible confidence intervals
CScensoring scheme
CPcoverage probability for the proposed confidence intervals
ERDextended Rayleigh distribution
GELgeneralized entropy loss function
HRFhazard rate function
IFBayesian estimates based on informative gamma priors
knumber of units inside each group under first-failure censoring
LINEXlinear exponential loss function
MCMCMarkov chain Monte Carlo sampling method
MLEmaximum likelihood estimate
MLmaximum likelihood.
MSEmean square error of the estimated value
NIFBayesian estimates based on non-informative priors
ncomplete number of groups under first-failure censoring
PFFCprogressive first-failure censoring
PFFCSprogressive first-failure censoring scheme
PT-II CSprogressive Type-II censoring scheme
PDFprobability density function
SFsurvival function
SELsquared error loss function

References

  1. Balakrishnan, N.; Aggarwala, R. Progressive Censoring: Theory, Methods, and Applications; Springer Science & Business Media: New York, NY, USA, 2000. [Google Scholar]
  2. Balakrishnan, N. Progressive censoring methodology: An appraisal (with discussion). TEST 2007, 16, 211–289. [Google Scholar] [CrossRef]
  3. Balasooriya, U. Failure-censored reliability sampling plans for the exponential distribution. J. Stat. Comput. Simul. 1995, 52, 337–349. [Google Scholar] [CrossRef]
  4. Wu, J.W.; Hung, W.L.; Tsai, C.H. Estimation of the parameters of the Gompertz distribution under the first failure-censored sampling plan. Statistics 2003, 37, 517–525. [Google Scholar] [CrossRef]
  5. Wu, J.W.; Yu, H.Y. Statistical inference about the shape parameter of the Burr type-XII distribution under the failure censored sampling plan. Appl. Math. Comput. 2005, 163, 443–482. [Google Scholar] [CrossRef]
  6. Wu, S.J.; Kus, C. On estimation based on progressive first failure censored sampling. Comput. Stat. Data Anal. 2009, 53, 3659–3670. [Google Scholar] [CrossRef]
  7. Soliman, A.A.; Abd-Ellah, A.H.; Abou-Elheggag, N.A.; Abd-Elmougod, G.A. Estimation of the parameters of life for Gompertz distribution using progressive first-failure censored data. Comput. Stat. Data Anal. 2012, 56, 2471–2485. [Google Scholar] [CrossRef]
  8. Soliman, A.A.; Abd Ellah, A.H.; Abou-Elheggag, N.A.; Modhesh, A.A. Estimation from Burr type XII distribution using progressive first-failure censored data. J. Stat. Comput. Simul. 2013, 83, 2270–2290. [Google Scholar] [CrossRef]
  9. Dube, M.; Garg, R.; Krishna, H. On progressively first failure fensored Lindley distribution. Comput. Stat. 2016, 31, 139–163. [Google Scholar] [CrossRef]
  10. Ahmed, E.A. Estimation and prediction for the generalized inverted exponential distribution based on progressively first-failure censored data with application. J. Appl. Stat. 2017, 44, 1576–1608. [Google Scholar] [CrossRef]
  11. Kayal, T.; Tripathi, Y.M.; Wang, L. Inference for the Chen distribution under progressive first-failure censoring. J. Stat. Theory Pract. 2019, 13, 1–27. [Google Scholar] [CrossRef]
  12. Mahmoud, M.A.; Ghazal, M.G.; Radwan, H.M. Bayesian estimation and optimal censoring of inverted generalized linear exponential distribution using progressive first-failure censoring. Ann. Data Sci. 2020, 10, 527–554. [Google Scholar] [CrossRef]
  13. Zhang, J.; Tian, J.; Alcaide, A.M.; Leon, J.I.; Vazquez, S.; Franquelo, L.G.; Yin, S. Lifetime Extension Approach Based on Levenberg-Marquardt Neural Network and Power Routing of DC-DC Converters. IEEE Trans. Power Electron. 2023, 38, 10280–10291. [Google Scholar] [CrossRef]
  14. Zhang, J.; Li, X.; Tian, J.; Luo, H.; Yin, S. An integrated multi-head dual sparse self-attention network for remaining useful life prediction. Reliab. Eng. Syst. Saf. 2023, 233, 109096. [Google Scholar] [CrossRef]
  15. Almongy, H.M.; Almetwally, E.M.; Aljohani, H.M.; Alghamdi, A.S.; Hafez, E.H. A new extended Rayleigh distribution with applications of COVID-19 data. Results Phys. 2021, 23, 104012. [Google Scholar] [CrossRef] [PubMed]
  16. Zhang, J.; Jiang, Y.; Li, X.; Luo, H.; Yin, S.; Kaynak, O. Remaining useful life prediction of lithium-ion battery with adaptive noise estimation and capacity regeneration detection. IEEE/ASME Trans. Mechatron. 2022, 28, 632–643. [Google Scholar] [CrossRef]
  17. Zhang, J.; Jiang, Y.; Li, X.; Huo, M.; Luo, H.; Yin, S. An adaptive remaining useful life prediction approach for single battery with unlabeled small sample data and parameter uncertainty. Reliabil. Eng. Syst. Saf. 2022, 222, 108357. [Google Scholar] [CrossRef]
  18. Mohie El-Din, M.M.; Sharawy, A.; Abu-Moussa, M.H. E-Bayesian estimation for the parameters and hazard function of Gompertz distribution based on progressively type-II right censoring with application. Qual. Reliabil. Eng. Int. 2023, 39, 1299–1317. [Google Scholar] [CrossRef]
  19. Greene, W.H. Econometric Analysis, 4th ed. International ed.; Prentice Hall: Hoboken, NJ, USA, 2000; pp. 201–215. [Google Scholar]
  20. Agresti, A. Logistic Regression. In Categorical Data Analysis; Wiley & Sons, Inc.: Hoboken, NJ, USA, 2002. [Google Scholar]
  21. Barranco-Chamorro, I.; Luque-Calvo, P.L.; Jimenez-Gamero, M.D.; Alba-Fernández, M.V. A study of risks of Bayes estimators in the generalized half-logistic distribution for progressively type-II censored samples. Math. Comput. Simul. 2017, 137, 130–147. [Google Scholar] [CrossRef]
  22. Al-Bayyati, H.N. Comparing Methods of Estimating Weibull Failure Models Using Simulation. Ph.D. Thesis, College of Administration and Economics, Baghdad University, Baghdad, Iraq, 2002. Unpublished. [Google Scholar]
  23. Metropolis, N.; Rosenbluth, A.W.; Rosenbluth, M.N.; Teller, A.H.; Teller, E. Equation of state calculations by fast computing machines. J. Chem. Phys. 1953, 21, 1087–1092. [Google Scholar] [CrossRef]
  24. Wingo, D.R. Maximum likelihood methods for fitting the Burr type XII distribution to life test data. Biometr. J. 1983, 25, 77–84. [Google Scholar] [CrossRef]
Figure 1. The behaviour of the PDF, SF and HF of the ERD.
Figure 1. The behaviour of the PDF, SF and HF of the ERD.
Axioms 12 00680 g001
Figure 2. (a) The CDF, (b) Q-Q plot.
Figure 2. (a) The CDF, (b) Q-Q plot.
Axioms 12 00680 g002
Figure 3. MCMC iteration and the marginal posterior distributions of α , β , and δ for sample S1.
Figure 3. MCMC iteration and the marginal posterior distributions of α , β , and δ for sample S1.
Axioms 12 00680 g003
Figure 4. A comparison between the MLEs and BEs for IF priors of α based on different loss functions for samples S 1 , S 2 , and S 3 .
Figure 4. A comparison between the MLEs and BEs for IF priors of α based on different loss functions for samples S 1 , S 2 , and S 3 .
Axioms 12 00680 g004
Figure 5. A comparison between the MLEs and BEs for IF priors of β based on different loss functions for samples S 1 , S 2 , and S 3 .
Figure 5. A comparison between the MLEs and BEs for IF priors of β based on different loss functions for samples S 1 , S 2 , and S 3 .
Axioms 12 00680 g005
Figure 6. A comparison between the MLEs and BEs for IF priors of δ based on different loss functions for samples S 1 , S 2 , and S 3 .
Figure 6. A comparison between the MLEs and BEs for IF priors of δ based on different loss functions for samples S 1 , S 2 , and S 3 .
Axioms 12 00680 g006
Table 1. The PFF model as a generalized model for different sub-models.
Table 1. The PFF model as a generalized model for different sub-models.
RkSpecial Case
R = ( 0 , 0 , , 0 ) k > 0 The order statistics with first-failure censoring
R = ( 0 , 0 , , 0 ) k = 1 The order statistics with progressive Type-II censoring
R = ( 0 , 0 , , 0 , n m ) k = 1 Conventional Type-II censored order statistics
R = ( 0 , 0 , , 0 ) k = 1 and n = m Complete sample
Table 2. Relief times (hours) for 25 groups of arthritic patients.
Table 2. Relief times (hours) for 25 groups of arthritic patients.
0.290.340.350.360.360.460.460.490.490.50
0.50.520.560.590.600.610.620.700.700.71
0.730.750.750.840.87
Table 3. Progressive first-failure censored relief time samples with m = 15 .
Table 3. Progressive first-failure censored relief time samples with m = 15 .
Sample No. ( R 1 , R 2 , , R 15 ) Sample
S1(1, 0, 2, 1, 0, 2, 1, 0, 1, 0, 0, 0, 0, 0, 2)(0.29, 0.36, 0.46, 0.5, 0.52, 0.56, 0.56, 0.59, 0.61, 0.7, 0.7, 0.71, 0.71, 0.75, 0.84)
S2(2, 0, 2, 0, 2, 0, 2, 0, 0, 0, 0, 0, 0, 0, 2)(0.29, 0.34, 0.34, 0.36, 0.52, 0.52, 0.6, 0.6, 0.61, 0.61, 0.61, 0.61, 0.75, 0.75, 0.84)
S3(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 10)(0.29, 0.36, 0.46, 0.52, 0.56, 0.61, 0.61, 0.7, 0.7, 0.71, 0.73, 0.73, 0.75, 0.75, 0.84)
Table 4. The ML and Bayesian estimates based on PFFCS of real data.
Table 4. The ML and Bayesian estimates based on PFFCS of real data.
ParameterSampleMLIF NIF
BSBLBGBBBSBLBGBB
(h = 0.5)(q = 0.5)(c = 0.5) (h = 0.5)(q = 0.5)(c = 0.5)
α S12.1292.1122.1022.0972.1211.9021.9861.9542.123
S21.8321.811.8021.7951.8201.7131.6671.6361.768
S31.7671.7471.7391.7331.7571.6561.6081.5681.718
δ S11.1621.1531.1491.1431.1591.0391.1221.0951.172
S21.2281.2161.2111.2031.2251.1551.1281.0911.203
S30.8040.7890.7870.7790.7960.7500.7360.6980.788
β S10.9590.9610.9490.9250.9850.5750.7530.0382.770
S21.1591.1571.1461.1281.1761.1810.6690.0123.054
S31.2361.2561.2421.2211.2801.1620.5220.00354.208
S ( t = 0.6 ) S10.8000.79950.79900.7970.8010.7940.7940.7910.796
S20.7490.7490.7490.7470.7520.7540.7530.7500.757
S30.8750.8740.8740.8730.8750.8660.8660.8650.868
h ( t = 0.6 ) S11.7401.7281.6891.6591.7751.6271.5671.5141.705
S21.8481.8221.7821.7541.8661.6551.5891.5361.742
S30.8350.8180.8100.7860.8400.7880.7740.7330.826
Table 5. The Bayesian estimates continued based on PFFCs of real data.
Table 5. The Bayesian estimates continued based on PFFCs of real data.
ParameterSampleIF NIF
BLBGBBBLBGBB
( h = 2 )( q = 2 )( c = 2 )( h = 2 )( q = 2 )( c = 2 )
α S12.0642.0742.1441.7421.7612.127
S21.7841.7901.8601.5321.5351.909
S31.7191.7241.7991.5991.6082.053
δ S11.1401.1351.1801.0020.9791.122
S21.1991.1951.2471.0291.0041.279
S30.7860.7760.8240.7750.7301.082
β S10.9330.8981.1150.1840.0034.296
S21.1141.0981.2420.2110.00174.627
S31.2011.1881.3340.4080.01510.053
S ( t = 0.6 ) S10.7960.7950.8030.7970.7940.809
S20.7480.7460.7560.7530.7480.767
S30.8720.8710.8750.8630.8610.869
h ( t = 0.6 ) S11.5851.5901.9131.3631.2841.840
S21.7001.7121.9761.4411.4182.036
S30.7940.7560.9210.7650.5860.990
Table 6. The Lower and Upper bounds for the CIs of the parameters based on PFFC real data.
Table 6. The Lower and Upper bounds for the CIs of the parameters based on PFFC real data.
ParameterSampleAsym.CI. Cred. CI. (IF) Cred. CI. (NIF)
LU LU LU
α S10.7453.514 1.7562.485 1.2343.321
S20.6383.025 1.4592.201 1.0332.764
S30.4283.106 1.3702.122 0.9482.733
δ S10.4561.868 0.9241.395 0.7161.865
S20.3252.132 0.9501.531 0.6731.974
S30.0001.617 0.5900.996 0.3761.395
β S10.0005.177 0.5841.423 0.0026.334
S20.0005.717 0.8031.613 0.0016.209
S30.0009.382 0.8621.771 0.00048.076
S ( t = 0.6 ) S10.6880.913 0.7040.878 0.6720.895
S20.6190.880 0.6470.840 0.6220.869
S30.7920.957 0.8060.928 0.7630.945
h ( t = 0.6 ) S10.5852.896 1.0332.635 0.8192.756
S20.6893.008 1.1342.733 0.8422.836
S30.2921.377 0.4971.227 0.3901.316
Table 7. The values of A E and M S E for different estimates for α based on PFFCS.
Table 7. The values of A E and M S E for different estimates for α based on PFFCS.
IF NIF
k ( n , m ) Sch. MLBSBLBGBB BSBLBGBB
2(30, 20)IAE1.4951.4971.4901.4831.506 1.5461.5091.4861.588
MSE5.940  ×   10 2 9.500  ×   10 3 9.420  ×   10 3 9.610  ×   10 3 9.650  ×   10 3 1.750  ×   10 1 1.380  ×   10 1 1.440  ×   10 1 2.050  ×   10 1
IIAE1.4881.4941.4871.4801.503 1.5381.5051.4821.577
MSE5.210  ×   10 2 9.120  ×   10 3 9.080  ×   10 3 9.280  ×   10 3 9.220  ×   10 3 1.830  ×   10 1 1.500  ×   10 1 1.550  ×   10 1 2.090  ×   10 1
IIIAE1.6151.5251.5181.5101.535 1.8331.7631.7421.897
MSE9.920  ×   10 2 1.100  ×   10 2 1.050  ×   10 2 1.020  ×   10 2 1.180  ×   10 2 6.760  ×   10 1 4.630  ×   10 1 5.070  ×   10 1 8.250  ×   10 1
(50, 30)IAE1.48461.50131.49561.48981.509 1.50251.48041.46361.5296
MSE4.620  ×   10 2 1.030  ×   10 2 1.020  ×   10 2 1.030  ×   10 2 1.050  ×   10 2 1.050  ×   10 1 9.210  ×   10 2 9.290  ×   10 2 1.160  ×   10 1
IIAE1.47431.49341.4881.48251.5006 1.4731.45421.43971.4962
MSE3.860  ×   10 2 9.730  ×   10 3 9.680  ×   10 3 9.820  ×   10 3 9.810  ×   10 3 1.040  ×   10 1 8.930  ×   10 2 9.380  ×   10 2 1.140  ×   10 1
IIIAE1.55371.51161.50521.49891.5200 1.68931.65231.63531.727
MSE5.760  ×   10 2 1.180  ×   10 2 1.150  ×   10 2 1.150  ×   10 2 1.230  ×   10 2 3.140  ×   10 1 2.190  ×   10 1 2.500  ×   10 1 3.690  ×   10 1
(80, 50)IAE1.4711.5031.4981.4941.509 1.4431.4321.4211.458
MSE3.130  ×   10 2 9.900  ×   10 3 9.790  ×   10 3 9.840  ×   10 3 1.000  ×   10 2 4.270  ×   10 2 4.160  ×   10 2 4.240  ×   10 2 4.380  ×   10 2
IIAE1.4801.5041.5001.4961.509 1.4591.4481.4391.473
MSE2.950  ×   10 2 1.010  ×   10 2 1.000  ×   10 2 1.000  ×   10 2 1.030  ×   10 2 5.210  ×   10 2 4.890  ×   10 2 4.950  ×   10 2 5.470  ×   10 2
IIIAE1.5221.5111.5061.5021.518 1.5581.5441.5331.576
MSE3.430  ×   10 2 1.180  ×   10 2 1.160  ×   10 2 1.150  ×   10 2 1.210  ×   10 2 6.310  ×   10 2 5.690  ×   10 2 5.570  ×   10 2 6.920  ×   10 2
3(30, 20)IAE1.4961.4941.4871.4801.502 1.5671.5331.5121.605
MSE5.260  ×   10 2 9.990  ×   10 3 9.930  ×   10 3 1.010  ×   10 2 1.010  ×   10 2 1.620  ×   10 1 1.280  ×   10 1 1.280  ×   10 1 1.920  ×   10 1
IIAE1.4981.4941.4871.4811.502 1.5791.5451.5271.616
MSE4.570  ×   10 2 9.170  ×   10 3 9.120  ×   10 3 9.310  ×   10 3 9.270  ×   10 3 2.270  ×   10 1 1.620  ×   10 1 1.750  ×   10 1 2.720  ×   10 1
IIIAE1.60411.51761.51031.5031.5274 1.86291.79571.77661.9235
MSE9.630  ×   10 2 1.160  ×   10 2 1.110  ×   10 2 1.110  ×   10 2 1.210  ×   10 2 6.030  ×   10 1 3.980  ×   10 1 4.380  ×   10 1 7.410  ×   10 1
(50, 30)IAE1.4961.5041.4991.4941.512 1.5171.4991.4851.540
MSE4.000  ×   10 2 1.130  ×   10 2 1.110  ×   10 2 1.110  ×   10 2 1.150  ×   10 2 8.020  ×   10 2 7.080  ×   10 2 7.070  ×   10 2 8.900  ×   10 2
IIAE1.4991.5021.4971.4921.509 1.5161.5001.4871.536
MSE3.820  ×   10 2 1.100  ×   10 2 1.080  ×   10 2 1.090  ×   10 2 1.120  ×   10 2 8.330  ×   10 2 7.420  ×   10 2 7.410  ×   10 2 9.110  ×   10 2
IIIAE1.5541.5111.5051.4991.520 1.7021.6701.6521.737
MSE6.440  ×   10 2 1.280  ×   10 2 1.240  ×   10 2 1.240  ×   10 2 1.320  ×   10 2 2.000  ×   10 1 1.610  ×   10 1 1.570  ×   10 1 2.350  ×   10 1
(80, 50)IAE1.4961.5101.5051.5011.515 1.4691.4591.4501.482
MSE2.750  ×   10 2 1.020  ×   10 2 1.000  ×   10 2 9.980  ×   10 3 1.040  ×   10 2 3.510  ×   10 2 3.390  ×   10 2 3.410  ×   10 2 3.640  ×   10 2
IIAE1.4881.5031.4671.4991.458 1.4951.4501.5081.478
MSE2.440  ×   10 2 9.590  ×   10 3 3.070  ×   10 2 9.480  ×   10 3 2.970  ×   10 2 9.490  ×   10 3 2.990  ×   10 2 9.730  ×   10 3 3.170  ×   10 2
IIIAE1.5361.5161.5111.5071.522 1.5991.5851.5741.615
MSE3.600  ×   10 2 1.220  ×   10 2 1.190  ×   10 2 1.180  ×   10 2 1.250  ×   10 2 6.800  ×   10 2 6.200  ×   10 2 6.010  ×   10 2 7.420  ×   10 2
Table 8. The values of A E and M S E of different estimates for β based on PFFCS.
Table 8. The values of A E and M S E of different estimates for β based on PFFCS.
IF NIF
k ( n , m ) Sch. MLBSBLBGBB BSBLBGBB
2(30, 20)IAE0.6090.8160.8040.7730.844 1.3130.8590.4482.131
MSE1.460  ×   10 1 2.970  ×   10 3 2.630  ×   10 3 3.290  ×   10 3 4.880  ×   10 3 4.55  ×   10 + 0 1.44  ×   10 + 0 2.49  ×   10 + 0 4.880  ×   10 3
IIAE0.6000.8210.8090.7750.850 1.3490.8740.4832.192
MSE1.550  ×   10 1 5.930  ×   10 3 5.090  ×   10 3 5.330  ×   10 3 8.840  ×   10 3 7.11  ×   10 + 0 2.55  ×   10 + 0 4.91  ×   10 + 0 8.840  ×   10 3
IIIAE0.6000.8090.7980.7650.839 3.1691.5131.3104.939
MSE1.580  ×   10 1 3.340  ×   10 3 3.100  ×   10 3 4.190  ×   10 3 5.110  ×   10 3 5.84  ×   10 + 1 1.47  ×   10 + 1 3.70  ×   10 + 1 5.110  ×   10 3
(50, 30)IAE0.59050.81180.80050.76950.8399 0.98620.72110.35381.5673
MSE1.610  ×   10 1 2.900  ×   10 3 2.610  ×   10 3 3.370  ×   10 3 4.640  ×   10 3 3.17  ×   10 + 0 1.30  ×   10 + 0 2.32  ×   10 + 0 4.640  ×   10 3
IIAE0.58840.81450.80320.7720.8429 0.90570.65680.27511.5115
MSE1.580  ×   10 1 1.930  ×   10 3 1.650  ×   10 3 2.400  ×   10 3 3.710  ×   10 3 3.68  ×   10 + 0 1.48  ×   10 + 0 2.97  ×   10 + 0 3.710  ×   10 3
IIIAE0.59220.80850.79680.7640.8381 2.34991.23250.85683.7766
MSE1.600  ×   10 1 2.570  ×   10 3 2.380  ×   10 3 3.600  ×   10 3 4.210  ×   10 3 3.40  ×   10 + 1 5.64  ×   10 + 0 2.12  ×   10 + 1 4.210  ×   10 3
(80, 50)IAE0.5830.8050.7940.7640.832 0.6310.5300.2140.980
MSE1.550  ×   10 1 2.270  ×   10 3 2.170  ×   10 3 3.360  ×   10 3 3.450  ×   10 3 3.880  ×   10 1 3.020  ×   10 1 5.070  ×   10 1 3.450  ×   10 3
IIAE0.5910.8040.7930.7630.831 0.6810.5580.2531.065
MSE1.530  ×   10 1 2.190  ×   10 3 2.120  ×   10 3 3.350  ×   10 3 3.310  ×   10 3 9.130  ×   10 1 4.750  ×   10 1 8.420  ×   10 1 3.310  ×   10 3
IIIAE0.6100.8140.8020.7690.844 1.1620.7850.3271.995
MSE1.530  ×   10 1 2.240  ×   10 3 1.910  ×   10 3 2.760  ×   10 3 4.290  ×   10 3 3.20  ×   10 + 0 1.11  ×   10 + 0 2.07  ×   10 + 0 4.290  ×   10 3
3(30, 20)IAE0.5800.8170.8040.7710.847 1.7270.9260.5752.836
MSE1.580  ×   10 1 2.140  ×   10 3 1.700  ×   10 3 2.840  ×   10 3 5.910  ×   10 3 1.66  ×   10 + 1 2.88  ×   10 + 0 9.19  ×   10 + 0 5.910  ×   10 3
IIAE0.6120.8170.8050.7720.846 1.8591.0760.7123.022
MSE1.510  ×   10 1 2.790  ×   10 3 2.430  ×   10 3 3.120  ×   10 3 4.920  ×   10 3 2.16  ×   10 + 1 6.79  ×   10 + 0 1.40  ×   10 + 1 4.920  ×   10 3
IIIAE0.60650.80840.79670.76440.8377 4.8281.94641.9377.4773
MSE1.590  ×   10 1 3.000  ×   10 3 2.770  ×   10 3 3.910  ×   10 3 4.760  ×   10 3 1.33  ×   10 + 2 2.19  ×   10 + 1 7.35  ×   10 + 1 4.760  ×   10 3
(50, 30)IAE0.5670.8170.8050.7730.847 1.0560.7210.3261.794
MSE1.680  ×   10 1 2.120  ×   10 3 1.750  ×   10 3 2.370  ×   10 3 4.220  ×   10 3 3.49  ×   10 + 0 1.27  ×   10 + 0 2.32  ×   10 + 0 4.220  ×   10 3
IIAE0.5870.8160.8050.7720.846 1.1120.7290.3441.918
MSE1.590  ×   10 1 2.110  ×   10 3 1.770  ×   10 3 2.460  ×   10 3 4.170  ×   10 3 4.98  ×   10 + 0 1.52  ×   10 + 0 3.48  ×   10 + 0 4.170  ×   10 3
IIIAE0.5930.8090.7970.7650.838 3.2201.4891.0725.303
MSE1.630  ×   10 1 3.240  ×   10 3 3.020  ×   10 3 4.190  ×   10 3 4.930  ×   10 3 3.85  ×   10 + 1 6.96  ×   10 + 0 1.86  ×   10 + 1 4.930  ×   10 3
(80, 50)IAE0.5990.8140.8030.7710.843 0.6560.5180.1711.121
MSE1.560  ×   10 1 1.940  ×   10 3 1.650  ×   10 3 2.380  ×   10 3 3.750  ×   10 3 6.030  ×   10 1 3.220  ×   10 1 5.630  ×   10 1 3.750  ×   10 3
IIAE0.5940.8130.6690.8020.520 0.7700.1530.8421.180
MSE1.590  ×   10 1 1.780  ×   10 3 4.330  ×   10 1 1.520  ×   10 3 2.810  ×   10 1 2.360  ×   10 3 5.210  ×   10 1 3.550  ×   10 3 3.550  ×   10 3
IIIAE0.6080.8100.7980.7650.839 1.6771.0210.5142.848
MSE1.550  ×   10 1 2.640  ×   10 3 2.420  ×   10 3 3.600  ×   10 3 4.400  ×   10 3 6.10  ×   10 + 0 1.98  ×   10 + 0 3.45  ×   10 + 0 4.400  ×   10 3
Table 9. The values of A E and M S E of different estimates for δ based on PFFCS.
Table 9. The values of A E and M S E of different estimates for δ based on PFFCS.
IF NIF
k ( n , m ) Sch. MLBSBLBGBB BSBLBGBB
2(30, 20)IAE0.4730.4930.4920.4850.499 0.5330.5240.4990.559
MSE5.200  ×   10 3 2.550  ×   10 3 2.530  ×   10 3 2.610  ×   10 3 2.580  ×   10 3 5.320  ×   10 2 4.470  ×   10 2 3.630  ×   10 2 7.010  ×   10 2
IIAE0.4730.4930.4910.4850.498 0.5230.5140.4910.547
MSE5.160  ×   10 3 2.520  ×   10 3 2.520  ×   10 3 2.610  ×   10 3 2.540  ×   10 3 4.950  ×   10 2 4.200  ×   10 2 3.680  ×   10 2 6.420  ×   10 2
IIIAE0.5080.5090.5080.5020.514 0.6600.6390.6060.701
MSE4.870  ×   10 3 2.560  ×   10 3 2.510  ×   10 3 2.420  ×   10 3 2.720  ×   10 3 2.230  ×   10 1 1.770  ×   10 1 1.630  ×   10 1 2.830  ×   10 1
(50, 30)IAE0.47280.49550.49450.48970.4993 0.50120.4960.48060.5162
MSE4.650  ×   10 3 2.070  ×   10 3 2.070  ×   10 3 2.100  ×   10 3 2.100  ×   10 3 3.120  ×   10 2 2.720  ×   10 2 2.390  ×   10 2 3.840  ×   10 2
IIAE0.47220.49170.49080.4860.4956 0.48250.0.47880.46520.4949
MSE5.250  ×   10 3 2.420  ×   10 3 2.420  ×   10 3 2.490  ×   10 3 2.410  ×   10 3 2.330  ×   10 2 2.170  ×   10 2 2.070  ×   10 2 2.610  ×   10 2
IIIAE0.50010.50410.50310.49840.5078 0.60130.58990.56520.6283
MSE3.390  ×   10 3 1.630  ×   10 3 1.610  ×   10 3 1.600  ×   10 3 1.680  ×   10 3 8.600  ×   10 2 6.970  ×   10 2 6.030  ×   10 2 1.100  ×   10 1
(80, 50)IAE0.4750.4990.4980.4950.501 0.4710.4690.4610.478
MSE3.860  ×   10 3 1.670  ×   10 3 1.670  ×   10 3 1.660  ×   10 3 1.700  ×   10 3 7.120  ×   10 3 6.960  ×   10 3 6.770  ×   10 3 7.620  ×   10 3
IIAE0.4790.4990.4980.4950.501 0.4750.4730.4650.482
MSE3.740  ×   10 3 1.560  ×   10 3 1.550  ×   10 3 1.560  ×   10 3 1.570  ×   10 3 9.570  ×   10 3 9.230  ×   10 3 8.890  ×   10 3 1.030  ×   10 2
IIIAE0.4920.5010.5000.4970.503 0.5230.5200.5080.534
MSE2.530  ×   10 3 1.350  ×   10 3 1.340  ×   10 3 1.350  ×   10 3 1.360  ×   10 3 1.860  ×   10 2 1.660  ×   10 2 1.520  ×   10 2 2.170  ×   10 2
3(30, 20)IAE0.4750.4920.4910.4850.498 0.5600.5450.5200.590
MSE4.380  ×   10 3 2.380  ×   10 3 2.370  ×   10 3 2.480  ×   10 3 2.380  ×   10 3 1.560  ×   10 1 1.140  ×   10 1 1.070  ×   10 1 1.960  ×   10 1
IIAE0.4790.4920.4900.4840.497 0.5490.5400.5140.574
MSE4.640  ×   10 3 2.370  ×   10 3 2.370  ×   10 3 2.490  ×   10 3 2.360  ×   10 3 8.410  ×   10 2 7.310  ×   10 2 6.670  ×   10 2 1.000  ×   10 1
IIIAE0.51840.50970.50820.5010.5153 0.74290.70860.66650.7998
MSE6.630  ×   10 3 2.370  ×   10 3 2.320  ×   10 3 2.240  ×   10 3 2.540  ×   10 3 4.450  ×   10 1 3.280  ×   10 1 3.150  ×   10 1 5.800  ×   10 1
(50, 30)IAE0.4770.4960.4950.4900.500 0.5070.5020.4870.521
MSE4.400  ×   10 3 2.150  ×   10 3 2.140  ×   10 3 2.180  ×   10 3 2.170  ×   10 3 3.480  ×   10 2 3.110  ×   10 2 2.850  ×   10 2 4.050  ×   10 2
IIAE0.4790.4920.4910.4860.496 0.4990.4950.4800.512
MSE4.570  ×   10 3 2.200  ×   10 3 2.200  ×   10 3 2.280  ×   10 3 2.180  ×   10 3 2.530  ×   10 2 2.330  ×   10 2 2.170  ×   10 2 2.860  ×   10 2
IIIAE0.5090.5080.5070.5010.512 0.6420.6260.5960.676
MSE5.120  ×   10 3 1.990  ×   10 3 1.970  ×   10 3 1.920  ×   10 3 2.100  ×   10 3 1.270  ×   10 1 9.960  ×   10 2 8.740  ×   10 2 1.650  ×   10 1
(80, 50)IAE0.4840.5010.5000.4970.503 0.4790.4770.4690.486
MSE3.470  ×   10 3 1.690  ×   10 3 1.690  ×   10 3 1.680  ×   10 3 1.720  ×   10 3 7.370  ×   10 3 6.870  ×   10 3 6.380  ×   10 3 8.450  ×   10 3
IIAE0.4810.4970.4740.4960.473 0.4930.4640.4990.482
MSE3.570E  ×   10 3 1.760  ×   10 3 5.960  ×   10 3 1.760  ×   10 3 5.850  ×   10 3 1.780  ×   10 3 5.810  ×   10 3 1.760  ×   10 3 6.300  ×   10 3
IIIAE0.5040.5070.5060.5020.510 0.5580.5540.5390.571
MSE3.080  ×   10 3 1.470  ×   10 3 1.460  ×   10 3 1.430  ×   10 3 1.520  ×   10 3 2.490  ×   10 2 2.280  ×   10 2 1.980  ×   10 2 2.950  ×   10 2
Table 10. The values of A E and M S E of different estimates for S ( t = 1.5 ) based on PFFCS.
Table 10. The values of A E and M S E of different estimates for S ( t = 1.5 ) based on PFFCS.
IF NIF
k ( n , m ) Sch. MLBSBLBGBB BSBLBGBB
2(30, 20)IAE0.2170.2400.2380.2210.252 0.2520.2500.2210.270
MSE3.940  ×   10 3 2.860  ×   10 3 2.780  ×   10 3 2.530  ×   10 3 3.460  ×   10 3 5.310  ×   10 3 5.160  ×   10 3 5.210  ×   10 3 6.470  ×   10 3
IIAE0.2150.2410.2400.2220.253 0.2550.2520.2200.274
MSE4.300  ×   10 3 3.050  ×   10 3 2.970  ×   10 3 2.710  ×   10 3 3.680  ×   10 3 5.940  ×   10 3 5.760  ×   10 3 5.800  ×   10 3 7.290  ×   10 3
IIIAE0.1660.2190.2170.1960.233 0.2350.2310.1480.277
MSE9.010  ×   10 3 2.230  ×   10 3 2.210  ×   10 3 2.880  ×   10 3 2.380  ×   10 3 9.160  ×   10 3 8.940  ×   10 3 1.710  ×   10 2 1.040  ×   10 2
(50, 30)IAE0.21240.23280.23180.2190.2417 0.23860.23710.2170.2515
MSE3.190  ×   10 3 2.260  ×   10 3 2.220  ×   10 3 2.140  ×   10 3 2.550  ×   10 3 3.890  ×   10 3 3.820  ×   10 3 3.980  ×   10 3 4.350  ×   10 3
IIAE0.21480.2380.2370.22310.2476 0.24360.24190.2180.2589
MSE4.130  ×   10 3 2.890  ×   10 3 2.840  ×   10 3 2.670  ×   10 3 3.280  ×   10 3 5.110  ×   10 3 5.020  ×   10 3 5.290  ×   10 3 5.720  ×   10 3
IIIAE0.17460.22090.21970.20240.2326 0.23290.22940.15720.2708
MSE7.730  ×   10 3 1.930  ×   10 3 1.910  ×   10 3 2.310  ×   10 3 2.060  ×   10 3 8.860  ×   10 3 8.690  ×   10 3 1.540  ×   10 2 9.900  ×   10 3
(80, 50)IAE0.2100.2250.2250.2160.231 0.2240.2230.2100.232
MSE2.500  ×   10 3 1.760  ×   10 3 1.750  ×   10 3 1.770  ×   10 3 1.860  ×   10 3 2.720  ×   10 3 2.700  ×   10 3 2.960  ×   10 3 2.770  ×   10 3
IIAE0.2050.2240.2230.2140.231 0.2220.2210.2060.231
MSE3.070  ×   10 3 1.910  ×   10 3 1.900  ×   10 3 1.970  ×   10 3 1.990  ×   10 3 3.260  ×   10 3 3.240  ×   10 3 3.730  ×   10 3 3.240  ×   10 3
IIIAE0.1880.2220.2210.2090.230 0.2110.2090.1650.238
MSE5.330  ×   10 3 1.840  ×   10 3 1.830  ×   10 3 2.010  ×   10 3 1.920  ×   10 3 5.670  ×   10 3 5.650  ×   10 3 9.560  ×   10 3 5.440  ×   10 3
3(30, 20)IAE0.2060.2400.2390.2200.253 0.2510.2480.2030.276
MSE5.210  ×   10 3 2.860  ×   10 3 2.780  ×   10 3 2.540  ×   10 3 3.510  ×   10 3 6.760  ×   10 3 6.560  ×   10 3 8.020  ×   10 3 8.280  ×   10 3
IIAE0.2080.2410.2390.2190.254 0.2570.2540.2050.286
MSE5.150  ×   10 3 2.850  ×   10 3 2.770  ×   10 3 2.550  ×   10 3 3.550  ×   10 3 7.590  ×   10 3 7.330  ×   10 3 8.620  ×   10 3 9.680  ×   10 3
IIIAE0.16270.21920.21740.19220.236 0.27040.2650.14480.327
MSE1.180  ×   10 2 2.270  ×   10 3 2.250  ×   10 3 3.140  ×   10 3 2.500  ×   10 3 1.580  ×   10 2 1.510  ×   10 2 2.450  ×   10 2 2.130  ×   10 2
(50, 30)IAE0.2010.2320.2310.2170.242 0.2300.2280.1960.249
MSE4.740  ×   10 3 2.560  ×   10 3 2.520  ×   10 3 2.510  ×   10 3 2.860  ×   10 3 5.340  ×   10 3 5.280  ×   10 3 6.870  ×   10 3 5.610  ×   10 3
IIAE0.2030.2360.2350.2190.247 0.2370.2340.1950.260
MSE5.360  ×   10 3 2.900  ×   10 3 2.840  ×   10 3 2.770  ×   10 3 3.300  ×   10 3 6.550  ×   10 3 6.430  ×   10 3 8.450  ×   10 3 7.190  ×   10 3
IIIAE0.1700.2190.2170.1960.233 0.2620.2570.1540.314
MSE9.860  ×   10 3 2.310  ×   10 3 2.290  ×   10 3 3.010  ×   10 3 2.440  ×   10 3 1.440  ×   10 2 1.380  ×   10 2 2.090  ×   10 2 1.900  ×   10 2
(80, 50)IAE0.1980.2230.2220.2120.230 0.2100.2080.1880.223
MSE3.520  ×   10 3 1.960  ×   10 3 1.950  ×   10 3 2.040  ×   10 3 2.030  ×   10 3 3.800  ×   10 3 3.800  ×   10 3 5.100  ×   10 3 3.470  ×   10 3
IIAE0.2010.2280.2150.2270.214 0.2160.1910.2360.230
MSE4.180  ×   10 3 2.340  ×   10 3 4.360  ×   10 3 2.320  ×   10 3 4.350  ×   10 3 2.360  ×   10 3 5.850  ×   10 3 2.480  ×   10 3 4.120  ×   10 3
IIIAE0.1750.2160.2150.1990.226 0.2230.2200.1480.264
MSE7.650  ×   10 3 2.020  ×   10 3 2.010  ×   10 3 2.510  ×   10 3 2.000  ×   10 3 9.180  ×   10 3 9.030  ×   10 3 1.590  ×   10 2 1.010  ×   10 2
Table 11. The values of A E and M S E of different estimates for h ( t = 1.5 ) based on PFFCS.
Table 11. The values of A E and M S E of different estimates for h ( t = 1.5 ) based on PFFCS.
IF NIF
k ( n , m ) Sch. MLBSBLBGBB BSBLBGBB
2(30, 20)IAE3.3562.9072.7632.7553.012 3.3012.7832.8083.685
MSE1.13  ×   10 + 0 1.890  ×   10 1 1.830  ×   10 1 2.000  ×   10 1 2.110  ×   10 1 1.60  ×   10 + 0 7.640  ×   10 1 1.00E  ×   10 + 0 2.51  ×   10 + 0
IIAE3.4142.8962.7472.7393.005 3.3532.7792.8073.781
MSE1.39  ×   10 + 0 1.990  ×   10 1 1.940  ×   10 1 2.120  ×   10 1 2.210  ×   10 1 1.84  ×   10 + 0 8.090  ×   10 1 1.10  ×   10 + 0 2.98  ×   10 + 0
IIIAE4.7793.1752.9652.9703.320 6.1202.9843.5509.074
MSE1.54  ×   10 + 1 4.450  ×   10 1 3.010  ×   10 1 3.430  ×   10 1 5.750  ×   10 1 1.45  ×   10 + 2 2.38  ×   10 + 0 1.63  ×   10 + 1 5.59  ×   10 + 2
(50, 30)IAE3.40532.94432.8262.82263.0284 3.39652.98193.01753.6776
MSE1.12  ×   10 + 0 1.920  ×   10 1 1.730  ×   10 1 1.860  ×   10 1 2.140  ×   10 1 1.45  ×   10 + 0 7.250  ×   10 1 9.370  ×   10 1 2.07  ×   10 + 0
IIAE3.39092.90352.77772.77292.9943 3.47562.97473.01873.8188
MSE1.22  ×   10 + 0 2.170  ×   10 1 2.030  ×   10 1 2.190  ×   10 1 2.390  ×   10 1 1.78  ×   10 + 0 7.980  ×   10 1 1.08  ×   10 + 0 2.66  ×   10 + 0
IIIAE4.38973.10552.92252.92513.233 5.27223.03123.41317.1214
MSE8.68  ×   10 + 0 3.110  ×   10 1 2.160  ×   10 1 2.430  ×   10 1 4.020  ×   10 1 2.55  ×   10 + 1 2.35  ×   10 + 0 7.09  ×   10 + 0 6.51  ×   10 + 1
(80, 50)IAE3.4052.9862.8932.8933.050 3.5393.2413.2813.722
MSE9.670  ×   10 1 1.810  ×   10 1 1.570  ×   10 1 1.660  ×   10 1 2.020  ×   10 1 1.42  ×   10 + 0 8.350  ×   10 1 1.01  ×   10 + 0 1.80  ×   10 + 0
IIAE3.4813.0072.9062.9073.077 3.6423.2723.3293.864
MSE1.23  ×   10 + 0 2.170  ×   10 1 1.820  ×   10 1 1.940  ×   10 1 2.470  ×   10 1 1.84  ×   10 + 0 9.650  ×   10 1 1.23  ×   10 + 0 2.42  ×   10 + 0
IIIAE3.9343.0532.9152.9173.149 4.8003.3663.6505.737
MSE4.29  ×   10 + 0 2.680  ×   10 1 2.080  ×   10 1 2.280  ×   10 1 3.220  ×   10 1 1.13  ×   10 + 1 2.17  ×   10 + 0 4.81  ×   10 + 0 1.98  ×   10 + 1
3(30, 20)IAE3.6272.9142.7542.7453.032 3.7792.8582.9464.468
MSE2.33  ×   10 + 0 2.010  ×   10 1 1.930  ×   10 1 2.120  ×   10 1 2.330  ×   10 1 4.09  ×   10 + 0 1.17  ×   10 + 0 1.92  ×   10 + 0 7.35  ×   10 + 0
IIAE3.5412.9152.7472.7383.038 3.7042.7562.8154.453
MSE2.03  ×   10 + 0 1.980  ×   10 1 1.890  ×   10 1 2.090  ×   10 1 2.320  ×   10 1 3.60  ×   10 + 0 1.03  ×   10 + 0 1.61  ×   10 + 0 7.02  ×   10 + 0
IIIAE5.24533.18262.94082.94483.3511 6.48972.61043.107410.9588
MSE3.07  ×   10 + 1 4.090  ×   10 1 2.510  ×   10 1 2.950  ×   10 1 5.660  ×   10 1 9.63  ×   10 + 1 2.77  ×   10 + 0 1.51  ×   10 + 1 3.87  ×   10 + 2
(50, 30)IAE3.6922.9702.8322.8293.067 3.9763.1733.2964.501
MSE2.38  ×   10 + 0 2.430  ×   10 1 2.110  ×   10 1 2.270  ×   10 1 2.790  ×   10 1 4.09  ×   10 + 0 1.36  ×   10 + 0 2.13  ×   10 + 0 6.46  ×   10 + 0
IIAE3.6452.9502.8012.7973.056 4.0623.1083.2444.705
MSE2.30  ×   10 + 0 2.470  ×   10 1 2.160  ×   10 1 2.360  ×   10 1 2.850  ×   10 1 4.99  ×   10 + 0 1.35  ×   10 + 0 2.34  ×   10 + 0 8.39  ×   10 + 0
IIIAE4.7463.1582.9422.9473.308 6.0642.7483.2679.283
MSE2.16  ×   10 + 1 4.150  ×   10 1 2.740  ×   10 1 3.150  ×   10 1 5.480  ×   10 1 9.45  ×   10 + 1 2.95  ×   10 + 0 2.23  ×   10 + 1 2.71  ×   10 + 2
(80, 50)IAE3.6123.0192.9092.9103.095 4.1123.4943.6194.470
MSE1.75  ×   10 + 0 2.200  ×   10 1 1.820  ×   10 1 1.950  ×   10 1 2.530  ×   10 1 3.69  ×   10 + 0 1.54  ×   10 + 0 2.22  ×   10 + 0 5.13  ×   10 + 0
IIAE3.6172.9844.1252.8693.429 2.8683.5603.0644.539
MSE2.00  ×   10 + 0 2.420  ×   10 1 3.96  ×   10 + 0 2.050  ×   10 1 1.51  ×   10 + 0 2.200  ×   10 1 2.24  ×   10 + 0 2.740  ×   10 1 5.76  ×   10 + 0
IIIAE4.3283.1482.9742.9803.268 5.4563.2313.6457.072
MSE8.06  ×   10 + 0 3.540  ×   10 1 2.410  ×   10 1 2.710  ×   10 1 4.530  ×   10 1 2.39  ×   10 + 1 3.10  ×   10 + 0 8.91  ×   10 + 0 4.76  ×   10 + 1
Table 12. The average width ( A W ) and coverage probability ( C P ) for the Asym. CI and credible CI for the parameters α , β , δ based on PFFCS.
Table 12. The average width ( A W ) and coverage probability ( C P ) for the Asym. CI and credible CI for the parameters α , β , δ based on PFFCS.
Parameterk ( n , m ) Sch. Asym . CI . Cred . CI . ( IF ) Cred . CI . ( NIF )
AW ( CP ) AW ( CP ) AW ( CP )
α 2(30, 20)I8.660 (0.998)0.648 (0.994)1.3621 (0.940)
II18.944 (0.998)0.632 (0.987)1.303 (0.926)
III6.763 (1.000)0.680 (0.995)1.801 (0.914)
(50, 30)I4.153 (0.992)0.592 (0.994)1.072 (0.917)
II3.6547 (0.997)0.5722 (0.99)0.976 (0.923)
III1.8979 (0.999)0.6214 (0.993)1.3258 (0.934)
(80, 50)I1.017 (0.986)0.525 (0.988)0.789 (0.9)
II1.528 (0.988)0.500 (0.983)0.756 (0.891)
III1.412 (1.000)0.541 (0.978)0.887 (0.943)
3(30, 20)I6.319 (0.999)0.633 (0.992)1.291 (0.944)
II9.476 (1.000)0.624 (0.988 )1.262 (0.944)
III2.400 (1.000)0.670 (0.998)1.744 (0.886)
(50, 30)I2.698 (0.992)0.577 (0.987)0.987 (0.934)
II3.223 (0.997)0.557 (0.987)0.937 (0.929)
III2.044 (1.000)0.608 (0.989)1.269 (0.903)
(80, 50)I1.021 (0.992)0.504 (0.986)0.733 (0.924)
II0.979 (0.995)0.479 (0.983)0.683 (0.918)
III1.428 (1.000)0.528 (0.982)0.868 (0.925)
β 2(30, 20)I34.781 (1.000)0.829 (0.996)4.342 (0.880)
II94.373 (1.000)0.839 (0.991 )4.437 (0.870)
III48.041 (1.000)0.819 (0.996)9.647 (0.868)
(50, 30)I17.392 (1.000)0.826 (0.996)3.127 (0.886)
II17.2877 (1.000)0.8306 (0.997)3.1014 (0.878)
III13.5417 (1.000)0.8249 (1.000)7.6277 (0.866)
(80, 50)I3.011 (1.000)0.809 (1.000)1.989 (0.835)
II5.883 (1.000)0.807 (0.999 )2.153 (0.855)
III9.700 (1.000)0.838 (1.000)4.092 (0.877)
3(30, 20)I36.902 (1.000)0.847 (0.997)5.673 (0.881)
II63.595 (1.000)0.845 (0.992)5.999 (0.885)
III21.167 (1.000)0.799 (1.000)14.683 (0.863)
(50, 30)I12.190 (1.000 )0.846 (0.999 )3.714 (0.879)
II20.549 (1.000)0.842 (0.998)3.985 (0.873)
III21.719 (1.000)0.802 (0.999)10.765 (0.896)
(80, 50)I4.187 (1.000)0.832 (1.000)2.321 (0.847)
II4.491 (1.000)0.835 (1.000)2.494 (0.861)
III14.162 (1.000)0.826 (1.000)5.868 (0.881)
δ 2(30, 20)I4.206 (1.000)0.286 (0.987)0.576 (0.889)
II12.205 (0.999)0.281 (0.978)0.548 (0.880)
III3.817 (1.000)0.279 (0.982)0.787 (0.915)
(50, 30)I2.132 (0.997)0.240 (0.985)0.427 (0.878)
II2.0942 (0.998)0.2383 (0.979)0.3909 (0.879)
III1.0059 (1.000)0.2377 (0.993)0.6224 (0.921)
(80, 50)I0.398 (0.989)0.197 (0.979)0.293 (0.836)
II0.733 (0.997)0.195 (0.971 )0.292 (0.861)
III0.745 (1.000)0.193 (0.990)0.378 (0.920)
3(30, 20)I4.047 (1.000)0.278 (0.991)0.626 (0.908)
II7.021 (1.000)0.279 (0.982)0.593 (0.919)
III1.365 (1.000)0.292 (0.987)0.982 (0.889)
(50, 30)I1.272 (1.000)0.237 (0.987)0.432 (0.913)
II2.000 (0.999)0.242 (0.972)0.423 (0.905)
III1.277 (1.000)0.259 (0.989)0.723 (0.898)
(80, 50)I0.459 (0.998)0.193 (0.981)0.293 (0.860)
II0.478 (0.998)0.197 (0.975)0.296 (0.878)
III0.873 (1.000)0.207 (0.990)0.437 (0.927)
Table 13. The average width ( A W ) and coverage probability ( C P ) for the Asym. CI and credible CI for the functions S ( t = 1.5 ) , h ( t = 1.5 ) based on PFFCS.
Table 13. The average width ( A W ) and coverage probability ( C P ) for the Asym. CI and credible CI for the functions S ( t = 1.5 ) , h ( t = 1.5 ) based on PFFCS.
Parameterk ( n , m ) Sch. Asym . CI . Cred . CI . ( IF ) Cred . CI . ( NIF )
AW ( CP ) AW ( CP ) AW ( CP )
S2(30, 20)I1.465 (0.998)0.284 (0.991)0.344 (0.982)
II2.718 (0.999)0.287 (0.979)0.357 (0.965)
III5.427 (0.989)0.292 (0.990)0.439 (0.957)
(50, 30)I0.558 (0.991)0.2414 (0.984)0.287 (0.971)
II0.5409 (0.987)0.2511 (0.977)0.3102 (0.970)
III1.4254 (0.998)0.2664 (0.994)0.4197 (0.961)
(80, 50)I0.221 (0.977)0.197 (0.981)0.227 (0.966)
II0.248 (0.976)0.204 (0.973)0.241 (0.965)
III0.997 (0.999)0.224 (0.987)0.348 (0.971)
3(30, 20)I2.506 (0.998)0.292 (0.991)0.392 (0.980)
II3.463 (0.998)0.298 (0.987)0.410 (0.971)
III2.295 (0.979)0.315 (0.993)0.509 (0.945)
(50, 30)I1.121 (0.991)0.252 (0.983)0.330 (0.976)
II1.458 (0.992)0.267 (0.973)0.362 (0.967)
III2.601 (0.993)0.290 (0.989 )0.487 (0.955)
(80, 50)I0.339 (0.999)0.208 (0.988)0.265 (0.960)
II0.380 (0.988)0.218 (0.972)0.286 (0.962)
III1.704 (1.000)0.247 (0.989)0.415 (0.958)
h2(30, 20)I74.392 (0.991)2.984 (0.991)5.837 (0.964)
II116.827 (0.996)3.027 (0.988)6.197 (0.964)
III316.681 (1.000)3.663 (0.991)21.129 (0.935)
(50, 30)I22.713 (0.992)2.696 (0.985)5.063 (0.967)
II17.2093 (0.990)2.7766 (0.983)5.6379 (0.969)
III69.897 (1.000)3.4082 (0.997)15.588 (0.931)
(80, 50)I5.379 (0.997)2.376 (0.988)4.201 (0.957)
II8.364 (0.994 )2.496 (0.988)4.691 (0.961)
III37.573 (1.000)2.938 (0.994)10.568 (0.949)
3(30, 20)I111.089 (0.998)3.170 (0.994)8.307 (0.966)
II90.468 (0.995)3.225 (0.993)8.560 (0.961)
III20.364 (1.000)3.954 (0.998)26.174 (0.920)
(50, 30)I68.769 (0.996 )2.916 (0.985)7.449 (0.958)
II39.262 (1.000)3.030 (0.983)8.321 (0.964)
III165.018 (1.000)3.739 (0.993)22.168 (0.939)
(80, 50)I10.452 (1.000)2.603 (0.997)6.233 (0.942)
II11.772 (0.996)2.652 (0.981)6.664 (0.948)
III77.341 (1.000)3.317 (0.995)14.776 (0.941)
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Abu-Moussa, M.H.; Alsadat, N.; Sharawy, A. On Estimation of Reliability Functions for the Extended Rayleigh Distribution under Progressive First-Failure Censoring Model. Axioms 2023, 12, 680. https://doi.org/10.3390/axioms12070680

AMA Style

Abu-Moussa MH, Alsadat N, Sharawy A. On Estimation of Reliability Functions for the Extended Rayleigh Distribution under Progressive First-Failure Censoring Model. Axioms. 2023; 12(7):680. https://doi.org/10.3390/axioms12070680

Chicago/Turabian Style

Abu-Moussa, Mahmoud Hamed, Najwan Alsadat, and Ali Sharawy. 2023. "On Estimation of Reliability Functions for the Extended Rayleigh Distribution under Progressive First-Failure Censoring Model" Axioms 12, no. 7: 680. https://doi.org/10.3390/axioms12070680

APA Style

Abu-Moussa, M. H., Alsadat, N., & Sharawy, A. (2023). On Estimation of Reliability Functions for the Extended Rayleigh Distribution under Progressive First-Failure Censoring Model. Axioms, 12(7), 680. https://doi.org/10.3390/axioms12070680

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop