On Modified Interpolative Almost Type Contraction in Partial Modular Metric Spaces
Abstract
:1. Introduction
2. Preliminaries
- ⇔;
- ;
- ;
- ;
- ;
- .
- , ⇔;
- , ;
- ,
- , .
- ⇔, ;
- , ;
- , ;
- ,
- and ⇔, .
- , .
- ,
- for all ,
- if , are sequences in such that
- ;
- where ;
- for any sequence with
- where is non-decreasing and lower semi-continuous self-mapping on , that fulfills
- is non-decreasing;
- for each sequence , ⇔
- the terms and exist such that
- is continuous.
3. Partial Modular Metric Spaces and Some Topological Characteristics
- and ⇔, ;
- , ;
- , ;
- , .
- ,
- , for some and
- .
- , for all .
- , for all .
- By considering the inequality , we have
- the sequence is termed convergent to if and only if , as . Also, the point x is termed the limit of .
- is termed Cauchy if
- is entitled complete if every Cauchy sequence in is convergent to an element wherein .
- A function is called continuous in if the sequence satisfying as , whenever .
- If , from (1), the expression , is attained. Suppose that , , then , which yields that . By , we achieveConsequently, we gain , which means that .
- From , we get and , and . Hence, we haveNow, considering and the above inequality, we obtain
- is a Cauchy sequence in the if and only if it is an Cauchy sequence in the modular metric space induced by .
- A is complete if and only if the modular metric space induced by is complete. Furthermore,
- is convergent to if and only if , as .
4. Some Fixed Point Results in the Context of Partial Modular Metric Spaces
- is a non-decreasing mapping,
- , for all .
4.1. Consequences
4.2. An Application to Homotopy Theory
- (a)
- for every and
- (b)
- For all and , we have
- (c)
- is continuous and holds the subsequent inequality
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Banach, S. Sur les operations dans les emsembles abstraits et leurs applications aux equations integrales. Fund. Math. 1922, 1, 133–181. [Google Scholar] [CrossRef]
- Bakhtin, I.A. The contraction mapping principle in quasi-metric spaces. Funct. Anal. Unianowsk Gos. Ped. Inst. 1989, 30, 26–37. [Google Scholar]
- Czerwik, S. Contraction mappings in metric spaces. Acta. Math. Inform. Univ. Ostrav. 1993, 1, 5–11. [Google Scholar]
- Czerwik, S. Nonlinear set-valued contraction mappings in metric spaces. Atti Semin. Mat. Fis. Univ. Modena 1998, 46, 263–276. [Google Scholar]
- Matthews, S.G. Partial Metric Topology; Research Report 212; Dept. of Computer Science, The University of Warwick: Coventry, UK, 1992. [Google Scholar]
- Mustafa, Z.; Roshan, J.R.; Parvaneh, V.; Kadelburg, Z. Some common fixed point results in ordered partial metric spaces. J. Inequal. Appl. 2013, 562, 1–26. [Google Scholar] [CrossRef]
- Shukla, S. Partial metric spaces and fixed point theorems. Mediterr. J. Math. 2014, 11, 703–711. [Google Scholar] [CrossRef]
- Chistyakov, V.V. Modular metric spaces, I: Basic concepts. Nonlinear Anal. 2010, 72, 1–14. [Google Scholar] [CrossRef]
- Ege, M.E.; Alaca, C. Some results for modular metric spaces and an application to system of linear equations. Azerbaijan J. Math. 2018, 8, 3–14. [Google Scholar]
- Hosseinzadeh, H.; Parvaneh, V. Meir-Keeler type contractive mappings in modular and partial modular metric spaces. Asian-Eur. J. Math. 2020, 13, 1–18. [Google Scholar] [CrossRef]
- Das, D.; Narzary, S.; Singh, Y.M.; Khan, M.S.; Sessa, S. Fixed point results on partial modular metric space. Axioms 2022, 11, 62. [Google Scholar] [CrossRef]
- Chistyakov, V.V. Modular metric spaces, II: Application to superposition operators. Nonlinear Anal. 2010, 72, 15–30. [Google Scholar] [CrossRef]
- Chistyakov, V.V. Fixed points of modular contractive maps. Dokl. Math. 2012, 86, 515–518. [Google Scholar] [CrossRef]
- Öztürk, M.; Büyükkaya, A. Fixed point results for Suzuki-type contractions via simulation functions in modular metric spaces. Math. Meth. Appl. Sci. 2022, 45, 12167–12183. [Google Scholar] [CrossRef]
- Büyükkaya, A.; Fulga, A.; Öztürk, M. On generalized Suzuki-Proinov type (α,contractions in modular metric spaces. Filomat 2023, 37, 1207–1222. [Google Scholar] [CrossRef]
- Khojasteh, F.; Shukla, S.; Radenovic, S. A new approach to the study of fixed point theorems for simulation functions. Filomat 2015, 29, 1189–1194. [Google Scholar] [CrossRef]
- Argoubi, H.; Samet, B.; Vetro, C. Nonlinear contractions involving simulation functions in a metric space with a partial order. J. Nonlinear Sci. Appl. 2015, 8, 1082–1094. [Google Scholar] [CrossRef]
- Roldan-Lopez-de-Hierro, A.F.; Karapınar, E.; Roldan-Lopez-de-Hierro, C.; Martínez-Moreno, J. Coincidence point theorems on metric spaces via simulation functions. J. Comput. Appl. Math. 2015, 275, 345–355. [Google Scholar] [CrossRef]
- Joonaghany, G.H.; Farajzadeh, A.; Azhini, M.; Khojasteh, F. A new common fixed point theorem for Suzuki type contractions via generalized simulation functions. Sahand Commun. Math. Anal. 2019, 16, 129–148. [Google Scholar]
- Zoto, K.; Mlaiki, N.; Aydi, H. Related fixed point theorems via general approach of simulation functions. J. Math. 2020, 2020, 4820191. [Google Scholar] [CrossRef]
- Fulga, A.; Karapınar, E. Some results on contractions of type E. Mathematics 2018, 6, 195. [Google Scholar] [CrossRef]
- Aydi, H.; Karapınar, E.; Rakocevic, V. Nonunique fixed point theorems on metric spaces via simulation functions. Jordan J. Math. Stat. 2019, 12, 265–288. [Google Scholar]
- Agarwal, R.P.; Karapınar, E. Interpolative Rus-Reich-Ciric type contractions via simulation functions. An. St. Univ. Ovidius Constanta 2019, 27, 137–152. [Google Scholar]
- Öztürk, M.; Golkarmanesh, F.; Büyükkaya, A.; Parvaneh, V. Generalized almost simulative contraction mappings in modular metric spaces. J. Math. Ext. 2023, 17, 1–37. [Google Scholar]
- Cho, S.H. Fixed point theorem for contraction generalized metric spaces. Abstr. Appl. Anal. 2018, 2018, 1327691. [Google Scholar] [CrossRef]
- Cho, S.H. Fixed point theorems for contractions in Branciari distance spaces. Axioms 2022, 11, 479. [Google Scholar] [CrossRef]
- Jleli, M.; Samet, B. A new generalization of the Banach contraction principle. J. Inequal. Appl. 2014, 38, 2014. [Google Scholar] [CrossRef]
- Liu, X.D.; Chang, S.S.; Xiao, Y.; Zhao, L.C. Some fixed point theorems concerning (ψ,ϕ)type contraction in complete metric spaces. J. Nonlinear Sci. Appl. 2016, 9, 4127–4136. [Google Scholar] [CrossRef]
- Karapınar, E. Revisiting the Kannan type contractions via interpolation. Adv. Theory Nonlinear Anal. Appl. 2018, 2, 85–87. [Google Scholar] [CrossRef]
- Karapınar, E.; Agarwal, R.; Aydi, H. Interpolative Reich–Rus–Ćirić type contractions on partial metric spaces. Mathematics 2018, 6, 256. [Google Scholar] [CrossRef]
- Dung, N.V.; Hang, V.T.L. Remarks on partial metric spaces and fixed point. Mat. Vesn. 2017, 69, 231–240. [Google Scholar]
- Karapınar, E.; Chen, C.M.; Alghamdi, M.; Fulga, A. Advances on the fixed point results via simulation function involving rational terms. Adv. Differ. Equ. 2021, 409, 1–20. [Google Scholar] [CrossRef]
- Fulga, A.; Proca, A.M. Fixed point for Geraghty contractions. J. Nonlinear Sci. Appl. 2017, 10, 5125–5131. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kesik, D.; Büyükkaya, A.; Öztürk, M.
On Modified Interpolative Almost
Kesik D, Büyükkaya A, Öztürk M.
On Modified Interpolative Almost
Kesik, Dilek, Abdurrahman Büyükkaya, and Mahpeyker Öztürk.
2023. "On Modified Interpolative Almost
Kesik, D., Büyükkaya, A., & Öztürk, M.
(2023). On Modified Interpolative Almost