Optimality Conditions of the Approximate Efficiency for Nonsmooth Robust Multiobjective Fractional Semi-Infinite Optimization Problems
Abstract
:1. Introduction
2. Preliminaries
- (i)
- is nonempty compact convex;
- (ii)
- for any
- (iii)
- (iv)
- if f attains a local minimum at , then .
- (i)
- is continuous and locally a Lipschitz function;
- (ii)
- ;
- (iii)
- ;
- (iv)
- ;
- (v)
- ,
3. Optimality Conditions
4. Saddle Point Theorems
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Khantree, C.; Wangkeeree, R. On quasi approximate solutions for nonsmooth robust semi-infinite optimization problems. Carpathian J. Math. 2019, 35, 417–426. [Google Scholar] [CrossRef]
- Kanzi, N.; Nobakhtian, S. Nonsmooth semi-infinite programming problems with mixed constraints. J. Math. Anal. Appl. 2009, 351, 170–181. [Google Scholar] [CrossRef]
- Sun, X.K.; Teo, K.L.; Zeng, J. Robust approximate optimal solutions for nonlinear semi-infinite programming with uncertainty. Optimization 2020, 69, 2109–2129. [Google Scholar] [CrossRef]
- Pham, T.H. On Isolated/Properly Efficient Solutions in Nonsmooth Robust Semi-infinite Multiobjective Optimization. Bull. Malays. Math. Sci. Soc. 2023, 46, 73. [Google Scholar] [CrossRef]
- Chuong, T.D. Nondifferentiable fractional semi-infinite multiobjective optimization problems. Oper. Res. 2016, 44, 260–266. [Google Scholar] [CrossRef]
- Mishra, S.K.; Jaiswal, M. Optimality and duality for nonsmooth multiobjective fractional semi-infinite programming problem. Adv. Nonlinear Var. Inequalities 2013, 16, 69–83. [Google Scholar]
- Antczak, T. Sufficient optimality conditions for semi-infinite multiobjective fractional programming under (Φ,ρ)-V-invexity and generalized (Φ,ρ)-V-invexity. Filomat 2017, 30, 3649–3665. [Google Scholar] [CrossRef]
- Pan, X.; Yu, G.L.; Gong, T.T. Optimality conditions for generalized convex nonsmooth uncertain multi-objective fractional programming. J. Oper. Res. Soc. 2022, 1, 1–18. [Google Scholar] [CrossRef]
- Dem’yanov, V.F.; Vasil’ev, L.V. Nondifferentiable Optimization. In Optimization Software; Inc. Publications Division: New York, NY, USA, 1985. [Google Scholar]
- Han, W.Y.; Yu, G.L.; Gong, T.T. Optimality conditions for a nonsmooth uncertain multiobjective programming problem. Complexity 2020, 2020, 1–8. [Google Scholar] [CrossRef]
- Long, X.J.; Huang, N.J.; Liu, Z.B. Optimality conditions, duality and saddle points for nondifferentiable multiobjective fractional programs. J. Ind. Manag. Optim. 2017, 4, 287–298. [Google Scholar] [CrossRef]
- Kuroiwa, D.; Lee, G.M. On robust multiobjective optimization. J. Nonlinear Convex. Anal. 2012, 40, 305–317. [Google Scholar]
- Ben-Tal, A.; Ghaoui, L.E.; Nemirovski, A. Robust Optimization; Princeton University Press: Princeton, NJ, USA, 2009; pp. 16–64. [Google Scholar]
- Caristi, G.; Ferrara, M. Necessary conditions for nonsmooth multiobjective semi-infinite problems using Michel-Penot subdifferential. Decis. Econ. Financ. 2017, 40, 103–113. [Google Scholar] [CrossRef]
- Kabgani, A.; Soleimani-damaneh, M. Characterization of (weakly/properly/robust) efficient solutions in nonsmooth semi-infinite multiobjective optimization using convexificators. Optimization 2018, 67, 217–235. [Google Scholar] [CrossRef]
- Clarke, F.H. Optimization and Nonsmooth Analysis; Wiley: New York, NY, USA, 1983; pp. 46–78. [Google Scholar]
- Fakhar, M.; Mahyarinia, M.R.; Zafarani, J. On nonsmooth robust multiobjective optimization under generalized convexity with applications to portfolio optimization. Eur. J. Oper. Res. 2018, 265, 39–48. [Google Scholar] [CrossRef]
- Lee, G.M.; Kim, G.S.; Dinh, N. Optimality Conditions for Approximate Solutions of Convex Semi-Infinite Vector Optimization Problems. Recent Dev. Vector Optim. 2012, 1, 275–295. [Google Scholar]
- Chen, J.W.; Köbis, E.; Yao, J.C. Optimality Conditions and Duality for Robust Nonsmooth Multiobjective Optimization Problems with Constraints. J. Optim. Theory Appl. 2019, 265, 411–436. [Google Scholar] [CrossRef]
- Gerth, C.; Weidner, P. Nonconvex separation theorems and some applications in vector optimization. J. Optim. Theory Appl. 1990, 67, 297–320. [Google Scholar] [CrossRef]
- Han, Y. Connectedness of the approximate solution sets for set optimization problems. Optimization 2022, 71, 4819–4834. [Google Scholar] [CrossRef]
- Rockafellar, R.T. Convex Analysis; Princeton University Press: Princeton, NJ, USA, 1997; pp. 10–32. [Google Scholar]
- Tung, N.M.; Van Duy, M. Constraint qualifications and optimality conditions for robust nonsmooth semi-infinite multiobjective optimization problems. 4OR 2022, 21, 151–176. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, L.; Yu, G.; Han, W. Optimality Conditions of the Approximate Efficiency for Nonsmooth Robust Multiobjective Fractional Semi-Infinite Optimization Problems. Axioms 2023, 12, 635. https://doi.org/10.3390/axioms12070635
Gao L, Yu G, Han W. Optimality Conditions of the Approximate Efficiency for Nonsmooth Robust Multiobjective Fractional Semi-Infinite Optimization Problems. Axioms. 2023; 12(7):635. https://doi.org/10.3390/axioms12070635
Chicago/Turabian StyleGao, Liu, Guolin Yu, and Wenyan Han. 2023. "Optimality Conditions of the Approximate Efficiency for Nonsmooth Robust Multiobjective Fractional Semi-Infinite Optimization Problems" Axioms 12, no. 7: 635. https://doi.org/10.3390/axioms12070635
APA StyleGao, L., Yu, G., & Han, W. (2023). Optimality Conditions of the Approximate Efficiency for Nonsmooth Robust Multiobjective Fractional Semi-Infinite Optimization Problems. Axioms, 12(7), 635. https://doi.org/10.3390/axioms12070635