Faber Polynomial Coefficient Estimates for Bi-Close-to-Convex Functions Defined by the q-Fractional Derivative
Abstract
1. Introduction, Definitions and Motivation
2. The Faber Polynomial Expansion Method and Its Applications
3. Main Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alexander, J.W. Functions which map the interior of the unit circle upon simple regions. Ann. Math. 1915, 17, 12–22. [Google Scholar] [CrossRef]
- Alb Lupaş, A.; Oros, G.I. Differential subordination and superordination results using fractional integral of confluent hypergeometric function. Symmetry 2021, 13, 327. [Google Scholar] [CrossRef]
- Oros, G.I. Study on new integral operators defined using confluent hypergeometric function. Adv. Differ. Equ. 2021, 2021, 342. [Google Scholar] [CrossRef]
- Khan, Ş.S.; Altinkaya; Xin, Q.; Tchier, F.; Malik, S.N.; Khan, N. Faber Polynomial coefficient estimates for Janowski type bi-close-to-convex and bi-quasi-convex functions. Symmetry 2023, 15, 604. [Google Scholar] [CrossRef]
- Srivastava, H.M. Operators of basic (or q-) calculus and fractional q-Calculus and their applications. Iran. J. Sci. Technol. Trans. A Sci. 2020, 44, 327–344. [Google Scholar] [CrossRef]
- Ahmad, B.; Ntouyas, S.K.; Alsaedi, A. New existence results for nonlinear fractional differential equations with three-point integral boundary conditions. Adv. Differ. Equ. 2011, 2011, 107384. [Google Scholar] [CrossRef]
- Hilfer, R. Applications of Fractional Calculus in Physics; World Scientific Publishing Company: Singapore, 2000. [Google Scholar]
- Ibrahim, R.W. On holomorphic solutions for nonlinear singular fractional differential equations. Comput. Math. Appl. 2011, 62, 1084–1090. [Google Scholar] [CrossRef]
- Ibrahim, R.W. On solutions for fractional diffusion problems. Electron. J. Differ. Equ. 2010, 147, 1–11. [Google Scholar]
- Jackson, F.H. On q-functions and a certain difference operator. Earth Environ. Sci. Trans. R. Soc. Edinb. 1909, 46, 253–281. [Google Scholar] [CrossRef]
- Jackson, F.H. On q-definite integrals. Q. J. Pure Appl. Math. 1910, 41, 193–203. [Google Scholar]
- Ismail, M.E.H.; Merkes, E.; Styer, D. A generalization of starlike functions. Complex Var. Theory Appl. 1990, 14, 77–84. [Google Scholar] [CrossRef]
- Anastassiou, G.A.; Gal, S.G. Geometric and approximation properties of some singular integrals in the unit disk. J. Inequal. Appl. 2006, 2006, 17231. [Google Scholar] [CrossRef]
- Anastassiou, G.A.; Gal, S.G. Geometric and approximation properties of generalized singular integrals in the unit disk. J. Korean Math. Soc. 2006, 43, 425–443. [Google Scholar] [CrossRef]
- Mason, T.E. On properties of the solution of linear q-difference equations with entire function coefficients. Am. J. Math. 1915, 37, 439–444. [Google Scholar] [CrossRef]
- Aral, A.; Gupta, V. On q-Baskakov type operators. Demonstr. Math. 2009, 42, 109–122. [Google Scholar]
- Aral, A.; Gupta, V. On the Durrmeyer type modification of the q-Baskakov type operators. Nonlinear Anal. Theory Methods Appl. 2010, 72, 1171–1180. [Google Scholar] [CrossRef]
- Aral, A.; Gupta, V. Generalized q-Baskakov operators. Math. Slovaca 2011, 61, 619–634. [Google Scholar] [CrossRef]
- Aldweby, H.; Darus, M. On harmonic meromorphic functions associated with basic hypergeometric functions. Sci. World J. 2013, 2013, 164287. [Google Scholar]
- Aldweby, H.; Darus, M. A subclass of harmonic univalent functions associated with q-analogue of Dziok-Serivastva operator. ISRN Math. Anal. 2013, 2013, 382312. [Google Scholar]
- Kanas, S.; Răducanu, D. Some class of analytic functions related to conic domains. Math. Slovaca 2014, 64, 1183–1196. [Google Scholar] [CrossRef]
- Srivastava, H.M. Univalent functions, fractional calculus, and associated generalized hypergeometric functions. In Univalent Functions, Fractional Calculus, and Their Applications; Srivastava, H.M., Owa, S., Eds.; Ellis Horwood: Chichester, UK, 1989; pp. 329–354. [Google Scholar]
- Wanas, A.K.; Cotîrlă, L.-I. Initial coefficient estimates and Fekete-Szegö inequalities for new families of bi-univalent functions governed by (p,s)-Wanas operator. Symmetry 2021, 13, 2118. [Google Scholar] [CrossRef]
- Saliu, A.; Al-Shbeil, I.; Gong, J.; Malik, S.N.; Aloraini, N. Properties of q-symmetric starlike functions of Janowski type. Symmetry 2022, 14, 1907. [Google Scholar] [CrossRef]
- Çentikaya, A.; Cotîrlă, L.-I. Quasi-Hadamard product and partial sums for Sakaguchi-type function classes involving q-difference operator. Symmetry 2022, 14, 709. [Google Scholar]
- Srivastava, H.M.; Mishra, A.K.; Gochhayat, P. Certain subclasses of analytic and bi-univalent functions. Appl. Math. Lett. 2010, 23, 1188–1192. [Google Scholar] [CrossRef]
- Hamidi, S.G.; Jahangiri, J.M. Faber polynomials coefficient estimates for analytic bi-close-to-convex functions. C. R. Math. 2014, 352, 17–20. [Google Scholar] [CrossRef]
- Lewin, M. On a coefficient problem for bi-univalent functions. Proc. Am. Math. Soc. 1967, 18, 63–68. [Google Scholar] [CrossRef]
- Brannan, D.A.; Clunie, J.G. Aspects of contemporary complex analysis. In Proceedings of the NATO Advanced Study Institute Held at University of Durham, Durham, UK, 29 August–10 September 1979; Academic Press: New York, NY, USA, 1979. [Google Scholar]
- Netanyahu, E. The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in τ<1. Arch. Ration. Mech. Anal. 1967, 32, 100–112. [Google Scholar]
- Brannan, D.A.; Taha, T.S. On some classes of bi-univalent function. Stud. Univ.-Babes-Bolyai Math. 1986, 31, 70–77. [Google Scholar]
- Hayami, T.; Owa, S. Coefficient bounds for bi-univalent functions. Panam. Math. J. 2012, 22, 15–26. [Google Scholar]
- Alharbi, A.; Murugusundaramoorthy, G.; El-Deeb, S.M. Yamaguchi-Noshiro type bi-univalent functions associated with Salagean-Erdélyi-Kober operator. Mathematics 2022, 10, 2241. [Google Scholar] [CrossRef]
- Oros, G.I.; Cotîrlă, L.-I. Coefficient estimates and the Fekete-Szegö problem for new classes of m-fold symmetric bi-univalent functions. Mathematics 2022, 10, 129. [Google Scholar] [CrossRef]
- Faber, G. Über polynomische Entwickelungen. Math. Ann. 1903, 57, 1569–1573. [Google Scholar] [CrossRef]
- Schiffer, M. Faber polynomials in the theory of univalent functions. Bull. Am. Soc. 1948, 54, 503–517. [Google Scholar] [CrossRef]
- Gong, S. The Bieberbach Conjecture: AMS/IP Studies in Advanced Mathematics; American Mathematical Society: Providence, RI, USA, 1999; Volume 12. [Google Scholar]
- Pommerenke, C. Über die Faberschen Polynome schlichter Funktionen. Math. Z. 1964, 85, 197–208. [Google Scholar] [CrossRef]
- Pommerenke, C. Konform Abbildung und Fekete-Punkte. Math. Z. 1965, 89, 422–438. [Google Scholar] [CrossRef]
- Pommerenke, C. Über die Verteilung der Fekete-Punkte. Math. Ann. 1967, 168, 111–127. [Google Scholar] [CrossRef]
- Hamidi, S.G.; Jahangiri, J.M. Faber polynomial coefficient estimates for bi-univalent functions defined by subordinations. Bull. Iran. Math. Soc. 2015, 41, 1103–1119. [Google Scholar]
- Airault, H. Remarks on Faber polynomials. Int. Math. Forum 2008, 3, 449–456. [Google Scholar]
- Attiya, A.A.; Lashin, A.M.; Ali, E.E.; Agarwal, P. Coefficient bounds for certain classes of analytic functions associated with Faber polynomial. Symmetry 2021, 13, 302. [Google Scholar] [CrossRef]
- Altinkaya, Ş.; Yalçin, S. Faber polynomial coefficient bounds for a subclass of bi-univalent functions. C. R. Math. 2015, 353, 1075–1080, reprinted in Stud. Univ.-Babes-Bolyai Math. 2016, 61, 37–44. [Google Scholar] [CrossRef]
- Bulut, S. Faber polynomial coefficients estimates for a comprehensive subclass of analytic bi-univalent functions. C. R. Math. 2014, 352, 479–484. [Google Scholar] [CrossRef]
- Bulut, S. Faber polynomial coefficient estimates for certain subclasses of meromorphic bi-univalent functions. C. R. Math. 2015, 353, 113–116. [Google Scholar] [CrossRef]
- Hamidi, S.G.; Jahangiri, J.M. Faber polynomial coefficients of bi-subordinate functions. C. R. Math. 2016, 354, 365–370. [Google Scholar] [CrossRef]
- Cotırlă, L.-I.; Wanas, A.K. Coefficient-related studies and Fekete-Szegö type inequalities for new classes of bi-starlike and bi-convex functions. Symmetry 2022, 14, 2263. [Google Scholar] [CrossRef]
- Páll-Szabö, Á.O.; Oros, G.I. Coefficient related studies for new classes of bi-univalent functions. Mathematics 2020, 8, 1110. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Eker, S.S.; Hamidi, S.G.; Jahangiri, J.M. Faber polynomial coefficient estimates for bi-univalent functions defined by the Tremblay fractional derivative operator. Bull. Iran. Math. Soc. 2018, 44, 149–157. [Google Scholar] [CrossRef]
- Al-Shbeil, I.; Khan, N.; Tchier, F.; Xin, Q.; Malik, S.N.; Khan, S. Coefficient bounds for a family of s-fold symmetric bi-univalent functions. Axioms 2023, 12, 317. [Google Scholar] [CrossRef]
- Purohit, S.D.; Raina, R.K. Certain subclasses of analytic functions associated with fractional q-calculus operators. Math. Scand. 2011, 109, 55–70. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Choi, J. Zeta and q-Zeta Functions and Associated Series and Integrals; Elsevier Science Publishers: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Srivastava, H.M. Some parametric and argument variations of the operators of fractional calculus and related special functions and integral transformations. J. Nonlinear Convex Anal. 2021, 22, 1501–1520. [Google Scholar]
- Selvakumaran, K.A.; Choi, J.; Purohit, S.D. Certain subclasses of analytic functions defined by fractional q-calculus operators. Appl. Math. E-Notes 2021, 21, 72–80. [Google Scholar]
- Sakar, F.M.; Güney, H.O. Faber polynomial coefficient bounds for analytic bi-close to convex functions defined by fractional calculus. J. Fract. Calc. Appl. 2018, 9, 64–71. [Google Scholar]
- Airault, H. Symmetric sums associated to the factorizations of Grunsky coefficients. In Groups and Symmetries: From Neolithic Scots to John McKay; American Mathematical Society: Montreal, QC, Canada, 2007. [Google Scholar]
- Duren, P.L. Univalent Functions. In Grundlehren der Mathematischen Wissenschaften, Band 259; Springer: Berlin/Heidelberg, Germany, 1983. [Google Scholar]
- Srivastava, H.M. An introductory overview of Bessel polynomials, the generalized Bessel polynomials and the q-Bessel polynomials. Symmetry 2023, 15, 822. [Google Scholar] [CrossRef]
- Al-Shbeil, I.; Shaba, T.G.; Cătaş, A. Second Hankel determinant for the subclass of bi-univalent functions using q-Chebyshev polynomial and Hohlov operator. Fractal Fract. 2022, 6, 186. [Google Scholar] [CrossRef]
- Al-Shbeil, I.; Srivastava, H.M.; Arif, M.; Haq, M.; Khan, N.K. Majorization results based upon the Bernardi integral operator. Symmetry 2022, 14, 1404. [Google Scholar] [CrossRef]
- Al-Shbeil, I.; Cătaş, A.; Srivastava, H.M.; Aloraini, N. Coefficient estimates of new families of analytic functions associated with q-Hermite polynomials. Axioms 2023, 12, 52. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Srivastava, H.M.; Al-Shbeil, I.; Xin, Q.; Tchier, F.; Khan, S.; Malik, S.N. Faber Polynomial Coefficient Estimates for Bi-Close-to-Convex Functions Defined by the q-Fractional Derivative. Axioms 2023, 12, 585. https://doi.org/10.3390/axioms12060585
Srivastava HM, Al-Shbeil I, Xin Q, Tchier F, Khan S, Malik SN. Faber Polynomial Coefficient Estimates for Bi-Close-to-Convex Functions Defined by the q-Fractional Derivative. Axioms. 2023; 12(6):585. https://doi.org/10.3390/axioms12060585
Chicago/Turabian StyleSrivastava, Hari Mohan, Isra Al-Shbeil, Qin Xin, Fairouz Tchier, Shahid Khan, and Sarfraz Nawaz Malik. 2023. "Faber Polynomial Coefficient Estimates for Bi-Close-to-Convex Functions Defined by the q-Fractional Derivative" Axioms 12, no. 6: 585. https://doi.org/10.3390/axioms12060585
APA StyleSrivastava, H. M., Al-Shbeil, I., Xin, Q., Tchier, F., Khan, S., & Malik, S. N. (2023). Faber Polynomial Coefficient Estimates for Bi-Close-to-Convex Functions Defined by the q-Fractional Derivative. Axioms, 12(6), 585. https://doi.org/10.3390/axioms12060585