On Some Inequalities for the Generalized Euclidean Operator Radius
Abstract
:1. Introduction
2. Bounds for the Generalized Euclidean Operator Radius
- 1.
- The Power-Mean inequality:
- 2.
- The Power-Young inequality:
2.1. Basic Properties of the Generalized Euclidean Operator Radius
- 1.
- if and only if for each ();
- 2.
- ;
- 3.
- ;
- 4.
- 1.
- The generalized Euclidean operator radius is weakly unitarily invariant, i.e.,
- 2.
- ;
- 3.
- .
- 1.
- The first property follows since
- 2.
- By the definition of the generalized Euclidean operator radius, we have
- 3.
- Similarly, by definition and since are selfadjoint operators for all (), then we have
- 4.
- Finally, employing the classical Minkowski inequality, we obtain
2.2. Inequalities for the Generalized Euclidean Operator Radius
3. Upper and Lower Bounds for the Generalized Euclidean Operator Radius
4. Concluding Remarks
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Alomari, M.W. Numerical radius inequalities for Hilbert space operators. Complex Anal. Oper. Theory 2021, 15, 111. [Google Scholar] [CrossRef]
- Dragomir, S.S. Inequalities for the numerical radius of linear operators in Hilbert spaces. In SpringerBriefs in Mathematics; Springer: Cham, Switzerland, 2013. [Google Scholar]
- Halmos, P.R. A Hilbert Space Problem Book; Van Nostrand Company, Inc.: Princeton, NJ, USA, 1967. [Google Scholar]
- Popescu, G. Unitary invariants in multivariable operator theory. Mem. Amer. Math. Soc. 2009, 200, 941. [Google Scholar] [CrossRef]
- Sheikhhosseini, A.; Moslehian, M.S.; Shebrawi, K. Inequalities for generalized Euclidean operator radius via Young’s inequality. J. Math. Anal. Appl. 2017, 445, 1516–1529. [Google Scholar] [CrossRef]
- Bajmaeh, A.B.; Omidvar, M.E. Some inequalities for the numerical radius and Rhombic numerical radius. Kragujev. J. Math. 2018, 42, 569–577. [Google Scholar]
- Feki, K. Some A-numerical radius inequalities for d×d operator matrices. Rend. Circ. Mat. Palermo II Ser. 2022, 71, 85–103. [Google Scholar] [CrossRef]
- Altwaijry, N.; Dragomir, S.S.; Feki, K. On the joint A-numerical radius of operators and related inequalities. Mathematics 2023, 11, 2293. [Google Scholar] [CrossRef]
- Conde, C.; Feki, K. Some numerical radius inequality for several semi-Hilbert space operators. Linear Multilinear Algebra 2023, 71, 1054–1071. [Google Scholar] [CrossRef]
- Altwaijry, N.; Feki, K.; Minculete, N. On some generalizations of Cauchy–Schwarz inequalities and their applications. Symmetry 2023, 15, 304. [Google Scholar] [CrossRef]
- Jana, S.; Bhunia, P.; Paul, K. Euclidean operator radius inequalities of a pair of bounded linear operators and their applications. Bull. Braz. Math. Soc. New Ser. 2023, 54, 1. [Google Scholar] [CrossRef]
- Hatamleh, R. On the form of correlation function for a class of nonstationary field with a zero spectrum. Rocky Mt. J. Math. 2003, 33, 159–173. [Google Scholar] [CrossRef]
- Hatamleh, R.; Zolotarev, V.A. Triangular Models of Commutative Systems of Linear Operators Close to Unitary Ones. UKrainian Math. J. 2016, 68, 791–811. [Google Scholar] [CrossRef]
- Bhunia, P.; Paul, K. Refinements of norm and numerical radius inequalities. Rocky Mountain J. Math. 2021, 51, 1953–1965. [Google Scholar]
- Bhunia, P.; Paul, K. New upper bounds for the numerical radius of Hilbert space operators. Rocky Mountain J. Math. 2021, 167, 102959. [Google Scholar] [CrossRef]
- Kian, M. Operator Jensen inequality for superquadratic functions. Linear Algebra Its Appl. 2014, 456, 82–87. [Google Scholar] [CrossRef]
- Kian, M.; Dragomir, S.S. Inequalities involving superquadratic functions and operators. Mediterr. J. Math. 2014, 11, 1205–1214. [Google Scholar] [CrossRef]
- Kittaneh, F.; Moslehian, M.S.; Yamazaki, T. Cartesian decomposition and numerical radius inequalities. Linear Algebra Its Appl. 2015, 471, 46–53. [Google Scholar] [CrossRef]
- Abu-Omar, A.; Kittaneh, F. Numerical radius inequalities for n×n operator matrices. Linear Algebra Its Appl. 2015, 468, 18–26. [Google Scholar] [CrossRef]
- Abramovich, S.; Jameson, G.; Sinnamon, G. Refining Jensen’s inequality. Bull. Math. Soc. Sci. Math. Roum. 2004, 47, 3–14. [Google Scholar]
- Alomari, M.W.; Chesneau, C.; Al-Khasawneh, A. Operator Jensen’s inequality for operator superquadratic functions. Axioms 2022, 11, 617. [Google Scholar] [CrossRef]
- Alomari, M.W. Operator Popoviciu’s inequality for superquadratic and convex functions of selfadjoint operators in Hilbert spaces. Advan. Pure Appl. Math. 2019, 10, 313–324. [Google Scholar] [CrossRef]
- Moslehian, M.S.; Sattari, M.; Shebrawi, K. Extension of Euclidean operator radius inequalities, Math. Scand. 2017, 120, 129–144. [Google Scholar]
- Alomari, M.W.; Shebrawi, K.; Chesneau, C. Some generalized Euclidean operator radius inequalities. Axioms 2022, 11, 285. [Google Scholar] [CrossRef]
- Hamadneh, T.; Alomari, M.W.; Al-Shbeil, I.; Alaqad, H.; Hatamleh, R.; Heilat, A.S.; Al-Husban, A. Refinements of the Euclidean operator radius and Davis–Wielandt radius-type inequalities. Symmetry 2023, 15, 1061. [Google Scholar] [CrossRef]
- Hajmohamadi, M.; Lashkaripour, R.; Bakherad, M. Some generalizations of numerical radius on off-diagonal part of 2×2 operator matrices. J. Math. Inequal. 2018, 12, 447–457. [Google Scholar] [CrossRef]
- Hajmohamadi, M.; Lashkaripour, R.; Bakherad, M. Further refinements of generalized numerical radius inequalities for Hilbert space operators. Georgian Math. J. 2019, 28, 83–92. [Google Scholar] [CrossRef]
- Reid, W. Symmetrizable completely continuous linear transformations in Hilbert space. Duke Math. 1951, 18, 41–56. [Google Scholar] [CrossRef]
- Mitrinović, D.S.; Pexcxarixcx, J.; Fink, A.M. Classical and New Inequalities in Analysis; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1993. [Google Scholar]
- Furuta, T.; Mićixcx, J.; Pexcxarixcx, J.; Seo, Y. Mond-Pečarić Method in Operator Inequalities; Element: Zagreb, Croatia, 2005. [Google Scholar]
- Kittaneh, F.; Manasrah, Y. Improved Young and Heinz inequalities for matrices. J. Math. Anal. Appl. 2010, 361, 262–269. [Google Scholar] [CrossRef]
- Furuta, T. An extension of the Heinz–Kato theorem. Proc. Amer. Math. Soc. 1994, 120, 785–787. [Google Scholar] [CrossRef]
- Dragomir, S.S. Some inequalities generalizing Kato’s and Furuta’s results. Filomat 2014, 28, 179–195. [Google Scholar] [CrossRef]
- Alomari, M.W. On the generalized mixed Schwarz inequality. Azerbaijan J. Math. 2022, 12, 124–137. [Google Scholar] [CrossRef]
- Kato, T. Notes on some inequalities for linear operators. Math. Ann. 1952, 125, 208–212. [Google Scholar] [CrossRef]
- Kittaneh, F. Notes on some inequalities for Hilbert Space operators. Publ. Res. Inst. Math. Sci. 1988, 24, 283–293. [Google Scholar] [CrossRef]
- Lin, C.-S.; Dragomir, S.S. On High-power Operator inequalities and spectral radii of operators. Publ. RIMS Kyoto Univ. 2006, 42, 391–397. [Google Scholar] [CrossRef]
- Alomari, M.W.; Bercu, G.; Chesneau, C. On the Dragomir extension of Furuta’s inequality and Numerical radius. Symmetry 2022, 14, 1432. [Google Scholar] [CrossRef]
- Guariglia, E.; Silvestrov, S. Fractional-Wavelet Analysis of Positive definite Distributions and Wavelets on D’(C). In Engineering Mathematics II; Silvestrov, R., Ed.; Springer: Berlin/Heidelberg, Germany, 2016; pp. 337–353. [Google Scholar]
- Guariglia, E.; Guido, R.C. Chebyshev Wavelet Analysis. J. Funct. Spaces 2022, 2022, 5542054. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alomari, M.W.; Bercu, G.; Chesneau, C.; Alaqad, H. On Some Inequalities for the Generalized Euclidean Operator Radius. Axioms 2023, 12, 542. https://doi.org/10.3390/axioms12060542
Alomari MW, Bercu G, Chesneau C, Alaqad H. On Some Inequalities for the Generalized Euclidean Operator Radius. Axioms. 2023; 12(6):542. https://doi.org/10.3390/axioms12060542
Chicago/Turabian StyleAlomari, Mohammad W., Gabriel Bercu, Christophe Chesneau, and Hala Alaqad. 2023. "On Some Inequalities for the Generalized Euclidean Operator Radius" Axioms 12, no. 6: 542. https://doi.org/10.3390/axioms12060542
APA StyleAlomari, M. W., Bercu, G., Chesneau, C., & Alaqad, H. (2023). On Some Inequalities for the Generalized Euclidean Operator Radius. Axioms, 12(6), 542. https://doi.org/10.3390/axioms12060542