On Green’s Function of the Dirichlet Problem for the Polyharmonic Equation in the Ball
Abstract
:1. Introduction
2. Fundamental Solution
3. Green’s Function
4. Solution of the Homogeneous Dirichlet Problem
5. Polynomial Right-Hand Side
6. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Begehr, H. Biharmonic Green functions. Le Matematiche 2006, 61, 395–405. [Google Scholar]
- Begehr, H.; Vaitekhovich, T. Modified harmonic Robin function. Complex Var. Elliptic Equ. 2013, 58, 483–496. [Google Scholar] [CrossRef]
- Sadybekov, M.A.; Torebek, B.T.; Turmetov, B.K. On an explicit form of the Green function of the Robin problem for the Laplace operator in a circle. Adv. Pure Appl. Math. 2015, 6, 163–172. [Google Scholar] [CrossRef]
- Wang, Y.; Ye, L. Biharmonic Green function and biharmonic Neumann function in a sector. Complex Var. Elliptic Equ. 2013, 58, 7–22. [Google Scholar] [CrossRef]
- Wang, Y. Tri-harmonic boundary value problems in a sector. Complex Var. Elliptic Equ. 2014, 59, 732–749. [Google Scholar] [CrossRef]
- Boggio, T. Sulle funzioni di Green d’ordinem. Palermo Rend. 1905, 20, 97–135. [Google Scholar] [CrossRef]
- Kalmenov, T.S.; Koshanov, B.D.; Nemchenko, M.Y. Green function representation for the Dirichlet problem of the polyharmonic equation in a sphere. Complex Var. Elliptic Equ. 2008, 53, 177–183. [Google Scholar] [CrossRef]
- Kal’menov, T.S.; Suragan, D. On a new method for constructing the Green function of the Dirichlet problem for the polyharmonic equation. Differ. Equ. 2012, 48, 441–445. [Google Scholar] [CrossRef]
- Karachik, V.V. Dirichlet and Neumann boundary value problems for the polyharmonic equation in the unit ball. Mathematics 2021, 9, 1907. [Google Scholar] [CrossRef]
- Karachik, V.V. On the arithmetic triangle arising from the solvability conditions for the Neumann problem. Math. Notes 2014, 96, 217–227. [Google Scholar] [CrossRef]
- Karachik, V.V. Greens function of Dirichlet problem for biharmonic equation in the ball. Complex Var. Elliptic Equ. 2019, 64, 1500–1521. [Google Scholar] [CrossRef]
- Karachik, V.V. The Green Function of the Dirichlet Problem for the Triharmonic Equation in the Ball. Math. Notes 2020, 107, 105–120. [Google Scholar] [CrossRef]
- Karachik, V.V.; Torebek, B.T. On the Dirichlet-Riquier problem for biharmonic equations. Math. Notes 2017, 102, 31–42. [Google Scholar] [CrossRef]
- Soldatov, A.P. On the Fredholm property and index of the generalized Neumann problem. Differ. Equ. 2020, 56, 212–220. [Google Scholar] [CrossRef]
- Karachik, V.V. Green’s Functions of the Navier and Riquier-Neumann Problems for the Biharmonic Equation in the Ball. Differ. Equ. 2021, 57, 654–668. [Google Scholar] [CrossRef]
- Sweers, G. A survey on boundary conditions for the biharmonic. Complex Var. Elliptic Equ. 2009, 54, 79–93. [Google Scholar] [CrossRef]
- Karachik, V.V. Riquier-Neumann problem for the polyharmonic equation in a ball. Mathematics 2023, 11, 1000. [Google Scholar] [CrossRef]
- Begehr, H.; Burgumbayeva, S.; Shupeyeva, B. Remark on Robin problem for Poisson equation. Complex Var. Elliptic Equ. 2017, 62, 1589–1599. [Google Scholar] [CrossRef]
- Akel, M.; Begehr, H. Neumann function for a hyperbolic strip and a class of related plane domains. Math. Nachrichten 2017, 290, 490–506. [Google Scholar] [CrossRef]
- Lin, H. Harmonic Green and Neumann functions for domains bounded by two intersecting circular arcs. Complex Var. Elliptic Equ. 2022, 67, 79–95. [Google Scholar] [CrossRef]
- Begehr, H.; Burgumbayeva, S.; Dauletkulova, A.; Lin, H. Harmonic Green functions for the Almaty apple. Complex Var. Elliptic Equ. 2020, 65, 1814–1825. [Google Scholar] [CrossRef]
- Chung, F.; Zeng, J. Forest formulas of discrete Green’s functions. J. Graph Theory 2022, 102, 556–577. [Google Scholar] [CrossRef]
- Herrera, W.J.; Vinck-Posada, H.; Gómez, Páez, S. Green’s functions in quantum mechanics courses. Am. J. Phys. 2022, 90, 763–769. [Google Scholar] [CrossRef]
- Härkönen, V.J. Exact factorization of the many-body Green’s function theory of electrons and nuclei. Phys. Rev. B 2022, 106, 205137. [Google Scholar] [CrossRef]
- Dong, H.; Li, H. Optimal Estimates for the Conductivity Problem by Green’s Function Method. Arch. Ration. Mech. Anal. 2019, 231, 1427–1453. [Google Scholar] [CrossRef]
- Grebenkov, D.S.; Traytak, S.D. Semi-analytical computation of Laplacian Green functions in three-dimensional domains with disconnected spherical boundaries. J. Comput. Phys. 2019, 379, 91–117. [Google Scholar] [CrossRef]
- Hsu, C.-W.; Hwu, C. Green’s functions for unsymmetric composite laminates with inclusions. Proc. R. Soc. Math. Phys. Eng. Sci. 2020, 476, 20190437. [Google Scholar] [CrossRef]
- Bitsadze, A.V. Uravneniya Matematicheskoi Fiziki (Equations of Mathematical Physics); Nauka: Moscow, Russia, 1982. [Google Scholar]
- Begerh, H.; Vu, T.N.H.; Zhang, Z.-X. Polyharmonic Dirichlet Problems. Proc. Steklov Inst. Math. 2006, 255, 13–34. [Google Scholar]
- Gazzola, F.; Grunau, H.C.; Sweers, G. Polyharmonic Boundary Value Problems; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Grunau, H.C.; Sweers, G. Positivity for equations involving polyharmonic operators with Dirichlet boundary conditions. Math. Ann. 1997, 307, 589–626. [Google Scholar] [CrossRef]
- Sobolev, S.L. Cubature Formulas and Modern Analysis: An Introduction; Nauka: Moscow, Russia, 1974; Gordon and Breach: Montreux, Switzerland, 1992. [Google Scholar]
- Vladimirov, V.S. Uravneniya Matematicheskoi Fiziki (Equations of Mathematical Physics); Nauka: Moscow, Russia, 1981. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karachik, V. On Green’s Function of the Dirichlet Problem for the Polyharmonic Equation in the Ball. Axioms 2023, 12, 543. https://doi.org/10.3390/axioms12060543
Karachik V. On Green’s Function of the Dirichlet Problem for the Polyharmonic Equation in the Ball. Axioms. 2023; 12(6):543. https://doi.org/10.3390/axioms12060543
Chicago/Turabian StyleKarachik, Valery. 2023. "On Green’s Function of the Dirichlet Problem for the Polyharmonic Equation in the Ball" Axioms 12, no. 6: 543. https://doi.org/10.3390/axioms12060543
APA StyleKarachik, V. (2023). On Green’s Function of the Dirichlet Problem for the Polyharmonic Equation in the Ball. Axioms, 12(6), 543. https://doi.org/10.3390/axioms12060543