New Algorithms for Dealing with Fractional Initial Value Problems
Abstract
:1. Introduction
2. Preliminaries
- ;
- ;
3. Some Existing Numerical Methods
4. Novel Numerical Modifications for FEM and MFEM
4.1. Improved Modified Fractional Euler Method 1
Algorithm 1 (IMFEM 1) |
|
4.2. Improved Modified Fractional Euler Method 2 (IMFEM 2)
Algorithm 2 (IMFEM 2) |
|
5. Estimations of Error Bounds
6. Numerical Simulations
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aho, A.; Hopcroft, J.E.; Ullman, J.D. The Design and Analysis of Algorithms; Addison-Wesley: Reading, MA, USA, 1975. [Google Scholar]
- Aitken, A.C. On interpolation by iteration of proportional parts without the use of differences. Proc. Edinb. Math. Soc. 1932, 3, 56–76. [Google Scholar] [CrossRef]
- Aitken, A.C. On the theory of graduation. Proc. R. Soc. Edinb. 1925, 46, 36–45. [Google Scholar] [CrossRef]
- Allgower, E.L.; Georg, K. Numerical Continuation Methods: An Introduction; Volume 13 of Computational Mathematics; Springer: Berlin/Heidelberg, Germany, 1990. [Google Scholar]
- Batiha, I.; Shameseddin Alshorm, M.; Jebril, I.; Hammad, M.A. A Brief Review about Fractional Calculus. Int. J. Open Probl. Compt. Math. 2022, 15, 39–56. [Google Scholar]
- Sabir, Z.; Guirao, J.L.G. A Soft Computing Scaled Conjugate Gradient Procedure for the Fractional Order Majnun and Layla Romantic Story. Mathematics 2023, 11, 835. [Google Scholar] [CrossRef]
- Mohammed, P.O.; Srivastava, H.M.; Guirao, J.L.; Hamed, Y.S. Existence of solutions for a class of nonlinear fractional difference equations of the Riemann–Liouville type. Adv. Cont. Discr. Mod. 2022, 2022, 32. [Google Scholar] [CrossRef]
- Heydari, M.H.; Razzaghi, M.; Baleanu, D. Numerical solution of distributed-order time fractional Klein–Gordon–Zakharov system. J. Comput. Sci. 2023, 67, 101961. [Google Scholar] [CrossRef]
- Heydari, M.H.; Razzaghi, M.; Baleanu, D. A numerical method based on the piecewise Jacobi functions for distributed-order fractional Schrödinger equation. Commun. Nonlinear Sci. Numer. Simul. 2023, 116, 106873. [Google Scholar] [CrossRef]
- Albadarneh, R.B.; Batiha, I.M.; Adwai, A.; Tahat, N.; Alomari, A.K. Numerical approach of Riemann–Liouville fractional derivative operator. Int. J. Electr. Comput. Eng. 2021, 11, 5367–5378. [Google Scholar] [CrossRef]
- Batiha, I.M.; Alshorm, S.; Ouannas, A.; Momani, S.; Ababneh, O.Y.; Albdareen, M. Modified Three-Point Fractional Formulas with Richardson Extrapolation. Mathematics 2022, 10, 3489. [Google Scholar] [CrossRef]
- Hussain, K.H. Some new existence and uniqueness results of Caputo fractional integro-differential equations. Int. J. Innov. Inf. Control 2021, 17, 2071–2079. [Google Scholar]
- Yasmin, H.; Abu Hammad, M.; Shah, R.; Alotaibi, B.M.; Ismaeel, S.M.E.; El-Tantawy, S.A. On the Solutions of the Fractional-Order Sawada–Kotera–Ito Equation and Modeling Nonlinear Structures in Fluid Mediums. Symmetry 2023, 15, 605. [Google Scholar] [CrossRef]
- Odibat, Z.M.; Momani, S. An algorithm for the numerical solution of differential equations of fractional order. J. Appl. Math. Inform. 2008, 26, 15–27. [Google Scholar]
- Batiha Iqbal, M.; Anwar, B.; Al-Nana Abeer, A.; Shameseddin, A.; Jebril Iqbal, H.; Amjed, Z. A numerical scheme for dealing with fractional initial value problem. Int. J. Innov. Comput. Inf. Control 2023, 19, 763. [Google Scholar]
- Podlubny, I. An Introduction to Fractional Derivatives, Fractional Differential Equations, Some Methods of Their Solution and Some of Their Applications; Academic Press: San Diego, CA, USA; Boston, MA, USA; New York, NY, USA; London, UK; Tokyo, Japan; Toronto, ON, Canada, 1999; 368p, ISBN 0125588402. [Google Scholar]
- Burden, R.L.; Faires, J.D.; Burden, A.M. Numerical Analysis, 9th ed.; Thomson Brooks/Cole: Boston, MA, USA, 2005. [Google Scholar]
- Workie, A.H. Small Modification on Modified Euler Method for Solving Initial Value Problems. Abstr. Appl. Anal. 2021, 2021, 9951815. [Google Scholar] [CrossRef]
t | FEM | MFEM | IMFEM 1 | IMFEM 2 |
---|---|---|---|---|
0 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
0.1 | 0.021739 | 0.005928 | 0.004831 | 0.004548 |
0.2 | 0.082124 | 0.056370 | 0.054565 | 0.054099 |
0.3 | 0.135733 | 0.104270 | 0.102043 | 0.101468 |
0.4 | 0.179022 | 0.144854 | 0.142410 | 0.141779 |
0.5 | 0.212368 | 0.177582 | 0.175068 | 0.174418 |
0.6 | 0.237075 | 0.203074 | 0.200592 | 0.199950 |
0.7 | 0.254595 | 0.222284 | 0.219901 | 0.219284 |
0.8 | 0.266279 | 0.236199 | 0.233958 | 0.233378 |
0.9 | 0.273306 | 0.245740 | 0.243666 | 0.243127 |
t | FEM | MFEM | IMFEM 1 | IMFEM 2 |
---|---|---|---|---|
0 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
0.1 | 0.010000 | 0.000250 | 0.000000 | 0.000000 |
0.2 | 0.019000 | 0.000476 | 0.000050 | 0.000048 |
0.3 | 0.027100 | 0.000681 | 0.000145 | 0.000141 |
0.4 | 0.034390 | 0.000866 | 0.000281 | 0.000275 |
0.5 | 0.040951 | 0.001034 | 0.000455 | 0.000451 |
0.6 | 0.046856 | 0.001186 | 0.000661 | 0.000656 |
0.7 | 0.052170 | 0.001323 | 0.000898 | 0.000893 |
0.8 | 0.056953 | 0.001447 | 0.001163 | 0.001158 |
0.9 | 0.061258 | 0.001560 | 0.001452 | 0.001447 |
t | FEM | MFEM | IMFEM 1 | IMFEM 2 |
---|---|---|---|---|
0 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
0.1 | 0.010471 | 0.000182 | 0.000182 | 0.000006 |
0.2 | 0.021106 | 0.000220 | 0.000220 | 0.000132 |
0.3 | 0.031330 | 0.000529 | 0.000529 | 0.000001 |
0.4 | 0.040422 | 0.001410 | 0.001408 | 0.000687 |
0.5 | 0.047497 | 0.003117 | 0.003104 | 0.002128 |
0.6 | 0.051641 | 0.005827 | 0.005769 | 0.004374 |
0.7 | 0.052161 | 0.009610 | 0.009420 | 0.007274 |
0.8 | 0.048877 | 0.014422 | 0.013915 | 0.010464 |
0.9 | 0.042377 | 0.020140 | 0.018993 | 0.013418 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Batiha, I.M.; Abubaker, A.A.; Jebril, I.H.; Al-Shaikh, S.B.; Matarneh, K. New Algorithms for Dealing with Fractional Initial Value Problems. Axioms 2023, 12, 488. https://doi.org/10.3390/axioms12050488
Batiha IM, Abubaker AA, Jebril IH, Al-Shaikh SB, Matarneh K. New Algorithms for Dealing with Fractional Initial Value Problems. Axioms. 2023; 12(5):488. https://doi.org/10.3390/axioms12050488
Chicago/Turabian StyleBatiha, Iqbal M., Ahmad A. Abubaker, Iqbal H. Jebril, Suha B. Al-Shaikh, and Khaled Matarneh. 2023. "New Algorithms for Dealing with Fractional Initial Value Problems" Axioms 12, no. 5: 488. https://doi.org/10.3390/axioms12050488
APA StyleBatiha, I. M., Abubaker, A. A., Jebril, I. H., Al-Shaikh, S. B., & Matarneh, K. (2023). New Algorithms for Dealing with Fractional Initial Value Problems. Axioms, 12(5), 488. https://doi.org/10.3390/axioms12050488