Granular Computing Approach to Evaluate Spatio-Temporal Events in Intuitionistic Fuzzy Sets Data through Formal Concept Analysis
Abstract
:1. Introduction
2. Related Works
3. Preliminaries
3.1. Intuitionistic Fuzzy (IF) Sets
3.2. Formal Concept Analysis (FCA)
4. Granular Computing (GrC)
5. Proposed Methodology
5.1. Periodic Occurrences (Co-Occurrences), Nonoccurrences, and Uncertainty of Occurrences/Nonoccurrences of Events in the Form of IF Datasets
5.2. Computation of an IF Granule
5.3. Information Granulation (IG)
5.4. Granular Computing Measures for the Interestingness Level of IF Lattice
5.5. Coverage (COV)
5.6. Specificity (SP)
5.7. Unique Index (Q) Value
6. Experimental Evaluation
7. Results and Discussion
8. Comparison with Previous SOTA (State of the Art) Approaches
8.1. Comparison with Previous Spatial and Temporal Approaches Using FCA and GrC
8.2. Comparison with Finding IE/IG
8.3. Comparison with Finding COV, SP, and Q Value
9. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gaeta, A.; Loia, V.; Orciuoli, F.; Parente, M. Spatial and temporal reasoning with granular computing and three way formal concept analysis. Granul. Comput. 2021, 6, 797–813. [Google Scholar] [CrossRef]
- Li, J.; Mei, C.; Xu, W.; Qian, Y. Concept learning via granular computing: A cognitive viewpoint. Inf. Sci. 2015, 298, 447–467. [Google Scholar] [CrossRef]
- Li, J.; Mei, C.; Aswani, C. On rule acquisition in decision formal contexts. Int. J. Mach. Learn. Cybern. 2013, 4, 721–731. [Google Scholar] [CrossRef]
- Xu, W.; Li, W. Granular Computing Approach to Two-Way Learning Based on Formal Concept Analysis in Fuzzy Datasets. IEEE Trans. Cybern. 2014, 46, 366–379. [Google Scholar] [CrossRef] [PubMed]
- Wei, L.; Wan, Q. Granular Transformation and Irreducible Element Judgment Theory Based on Pictorial Diagrams. IEEE Trans. Cybern. 2016, 46, 380–387. [Google Scholar] [CrossRef]
- Zhou, J.; Yang, S.; Wang, X.; Liu, W. Granule Description based on Compound Concepts. arXiv 2021, arXiv:2111.00004. [Google Scholar]
- Yang, X.; Zhang, Y.; Fujita, H.; Liu, D.; Li, T. Local temporal-spatial multi-granularity learning for sequential three-way granular computing. Inf. Sci. 2020, 541, 75–97. [Google Scholar] [CrossRef]
- Xin, X.W.; Sun, J.B.; Xue, Z.A.; Song, J.H.; Peng, W.M. A novel intuitionistic fuzzy three-way decision model based on an intuitionistic fuzzy incomplete information system. Int. J. Mach. Learn. Cybern. 2022, 13, 907–927. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, T.; Luo, C. Spatial–temporal fuzzy information granules for time series forecasting. Soft Comput. 2021, 25, 1963–1981. [Google Scholar] [CrossRef]
- Cui, J.; Zhao, J. Optimal route planning of traffic multi-source route based on granular computing. J. Ambient Intell. Humaniz. Comput. 2021, 1–11. [Google Scholar] [CrossRef]
- Dubois, D.; Prade, H. Bridging gaps between several forms of granular computing. Granul. Comput. 2016, 1, 115–126. [Google Scholar] [CrossRef]
- Sang, B.; Long, B.; Pang, J.; Xu, W. The Method of Data Analysis in Intuitionistic Fuzzy Generalized Consistent Decision Formal Context. Entropy 2019, 21, 262. [Google Scholar] [CrossRef] [PubMed]
- Bloch, I. Lattices of fuzzy sets and bipolar fuzzy sets, and mathematical morphology. Inf. Sci. 2015, 181, 2002–2015. [Google Scholar] [CrossRef]
- Pang, J.; Zhang, X.; Xu, W. Attribute Reduction in Intuitionistic Fuzzy Concept Lattices. Abs. App. Anal. 2013, 22–24. [Google Scholar] [CrossRef]
- Zadeh, L.A. Fuzzy Sets. Inf. Control 1965, 8, 338–353. [Google Scholar] [CrossRef]
- Atanassov, K.T. Intuitionistic fuzzy sets. Fuzzy Sets Syst. 1986, 20, 87–96. [Google Scholar] [CrossRef]
- Atanassov, K.T. Intuitionistic Fuzzy Sets. Stud. Fuzziness Soft Comput. 1999, 35, 142–149. [Google Scholar]
- Atanassov, K.T. On Intuitionistic Fuzzy Sets Theory, 1st ed.; Springer: Berlin/Heidelberg, Germany, 2012; Volume 283, pp. 142–149. [Google Scholar]
- Szmidt, E.; Kacprzyk, J. Distances Between Intuitionistic Fuzzy Sets: Straightforward Approaches may not work. In Proceedings of the 2006 3rd International IEEE Conference Intelligent Systems, London, UK, 4–6 September 2006. [Google Scholar]
- Szmidt, E. Distances and Similarities in Intuitionistic Fuzzy Sets, 1st ed.; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar]
- Zhu, Y.J.; Li, D.F. A new definition and formula of entropy for intuitionistic fuzzy sets. J. Intell. Fuzzy Syst. 2016, 30, 3057–3066. [Google Scholar] [CrossRef]
- Wei, C.; Zhang, Y. Entropy Measures for Interval-Valued Intuitionistic Fuzzy Sets and Their Application in Group Decision-Making. Math. Probl. Eng. 2015, 2015, 563745. [Google Scholar] [CrossRef]
- Chaira, T. Application of Fuzzy/Intuitionistic Fuzzy Set in Image Processing. Fuzzy Set Its Ext. 2019, 9, 237–257. [Google Scholar]
- Faizi, S.; Sałabun, W.; Rashid, T.; Zafar, S.; Watróbski, J. Intuitionistic fuzzy sets in multi-criteria group decision making problems using the characteristic objects method. Symmetry 2020, 12, 1382. [Google Scholar] [CrossRef]
- Bujnowski, P.; Szmidt, E.; Kacprzyk, J. Intuitionistic Fuzzy Decision Tree: A New Classifier. In Proceedings of the 7th IEEE International Conference Intelligent Systems IS’2014, Warsaw, Poland, 24–26 September 2014; Springer: Berlin/Heidelberg, Germany, 2015; pp. 779–790. [Google Scholar]
- Zou, L.; Zhang, Z.; Long, J. An efficient algorithm for increasing the granularity levels of attributes in formal concept analysis. Expert Syst. Appl. 2016, 46, 224–235. [Google Scholar] [CrossRef]
- Pedrycz, W. Granular Computing—The Emerging Paradigm. J. Uncertain Syst. 2007, 1, 38–61. [Google Scholar]
- Lin, T.Y. Granular computing, Announcement of the BISC Special Interest Group on Granular Computing. IEEE Int. Con. Gr. Comp. 2005, 1, 85–90. [Google Scholar]
- Smarandache, F. Neutrosophic Set—A Generalization of the Intuitionistic Fuzzy Set. J. Def. Resour. Manag. (JoDRM) 2010, 1, 107–116. [Google Scholar]
- Pedrycz, W. An Introduction to Computing with Fuzzy Sets, 1st ed.; Springer: Berlin/Heidelberg, Germany, 2021. [Google Scholar]
- Loia, V.; Orciuoli, F.; Pedrycz, W. Towards a granular computing approach based on Formal Concept Analysis for discovering periodicities in data. Knowl.-Based Syst. 2018, 146, 1–11. [Google Scholar] [CrossRef]
- Tan, A.; Wu, W.Z.; Qian, Y.; Liang, J.; Chen, J.; Li, J. Intuitionistic Fuzzy Rough Set-Based Granular Structures and Attribute Subset Selection. IEEE Trans. Fuzzy Syst. 2019, 27, 527–539. [Google Scholar] [CrossRef]
- Zhou, L. Formal concept analysis in intuitionistic fuzzy formal context. In Proceedings of the 2010 Seventh International Conference on Fuzzy Systems and Knowledge Discovery 2010, Yantai, China, 10–12 August 2010; Volume 5, pp. 2012–2015. [Google Scholar]
- Bao, H.; Wu, W.Z.; Zheng, J.W.; Li, T.J. Entropy based optimal scale combination selection for generalized multi-scale information tables. Int. J. Mach. Learn. Cybern. 2021, 12, 1427–1437. [Google Scholar] [CrossRef]
- Huang, C.; Li, J. Attribute significance, consistency measure and attribute reduction in formal concept analysis. Neural Netw. World 2016, 26, 607–623. [Google Scholar] [CrossRef]
- Li, J.; He, Z.; Zhu, Q. An entropy-based weighted concept lattice for merging multi-source geo-ontologies. Entropy 2013, 15, 2303–2318. [Google Scholar] [CrossRef]
- Szmidt, E.; Kacprzyk, J. Entropy for intuitionistic fuzzy sets. Fuzzy Sets Syst. 2001, 118, 467–477. [Google Scholar] [CrossRef]
- Joshi, R.; Kumar, S. A New Parametric Intuitionistic Fuzzy Entropy and its Applications in Multiple Attribute Decision Making. Int. J. Appl. Comput. Math. 2018, 4, 52. [Google Scholar] [CrossRef]
- Huang, B.; Li, H.X.; Feng, G.F.; Zhuang, Y.L. Distance-based Information Granularity and Hierarchical Structure for an Intuitionistic Fuzzy Granular Space. Fuzzy Inf. Eng. 2016, 8, 147–168. [Google Scholar] [CrossRef]
- Zhang, S.; Guo, P.; Zhang, J.; Wang, X.; Pedrycz, W. A completeness analysis of frequent weighted concept lattices and their algebraic properties. Data Knowl. Eng. 2012, 81, 104–117. [Google Scholar] [CrossRef]
- Pedrycz, W. Algorithmic Developments of Information Granules of Higher Type and Higher Order and Their Applications. Fuzzy Log. Soft Comput. Appl. 2016, 3, 27–41. [Google Scholar]
- Kuznetsov, S.O.; Makhalova, T. On interestingness measures of formal concepts. Inf. Sci. 2018, 442, 202–219. [Google Scholar] [CrossRef]
- Lloret-climent, M.; Pérez-gonzaga, S. Coverage and invariability in fuzzy systems. Int. J. Gen. Syst. 2013, 43, 96–104. [Google Scholar] [CrossRef]
- Pedrycz, W. Concepts and Design Aspects of Granular Models of Type-1 and Type-2. Int. J. Fuzzy Log. Intell. Syst. 2015, 15, 87–95. [Google Scholar] [CrossRef]
- Yager, R.R. Some aspects of intuitionistic fuzzy sets. Fuzzy Optim. Decis. Mak. 2009, 8, 67–90. [Google Scholar] [CrossRef]
- Yang, X.; Li, T.; Liu, D.; Fujita, H. A temporal-spatial composite sequential approach of three-way granular computing. Inf. Sci. 2019, 486, 171–189. [Google Scholar] [CrossRef]
⋯ | |||||
---|---|---|---|---|---|
⋯ | |||||
⋯ | |||||
⋯ | |||||
⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ |
⋯ |
(0.9, 0.1) | (0.6, 0.2) | (0.3, 0.7) | (0.8, 0.1) | (0.3, 0.6) | (0.9, 0.0) | |
(0.3, 0.5) | (0.5, 0.5) | (0.8, 0.2) | (0.2, 0.5) | (0.7, 0.2) | (0.8, 0.1) | |
(0.8, 0.2) | (0.6, 0.2) | (0.7, 0.1) | (0.2, 0.7) | (0.4, 0.6) | (0.1, 0.8) | |
(0.2, 0.6) | (0.3, 0.6) | (0.6, 0.3) | (0.1, 0.6) | (0.2, 0.8) | (0.7, 0.2) |
(0.9, 0.1) | (0.6, 0.2) | (0.3, 0.7) | (0.8, 0.1) | (0.3, 0.6) | (0.9, 0.0) | (0.7, 0.2) | (0.4, 0.3) | |
(0.3, 0.5) | (0.5, 0.5) | (0.8, 0.2) | (0.2, 0.5) | (0.7, 0.2) | (0.8, 0.1) | (0.8, 0.2) | (0.5, 0.4) | |
(0.8, 0.2) | (0.6, 0.2) | (0.7, 0.1) | (0.2, 0.7) | (0.4, 0.6) | (0.1, 0.8) | (0.7, 0.3) | (0.2, 0.7) | |
(0.2, 0.6) | (0.3, 0.6) | (0.6, 0.3) | (0.1, 0.6) | (0.2, 0.8) | (0.7, 0.2) | (0.8, 0.1) | (0.1, 0.6) |
0.365 | 0.95 | 0.34675 | |
0.38 | 0.89 | 0.3382 | |
0.4 | 0.96 | 0.384 | |
0.5 | 0.92 | 0.46 | |
0.5 | 0.93 | 0.465 | |
0.41 | 0.93 | 0.3813 | |
0.44 | 0.92 | 0.4048 | |
0.55 | 0.92 | 0.506 | |
0.45 | 0.92 | 0.414 | |
0.59 | 0.92 | 0.5428 | |
0.585 | 0.94 | 0.5499 | |
0.57 | 0.91 | 0.5187 | |
0 | 0 | 0 |
(0.9, 0.1) | (0.6, 0.2) | (0.3, 0.7) | (0.8, 0.1) | (0.9, 0.0) | (0.0, 0.9) | (0, 0) | |
(0.3, 0.5) | (0.5, 0.5) | (0.8, 0.2) | (0.2, 0.5) | (1, 0) | (0, 1) | (0, 0) | |
(0.8, 0.2) | (0.6, 0.2) | (0.7, 0.1) | (0.2, 0.7) | (0.8, 0.1) | (0.1, 0.9) | (0, 0) | |
(0.2, 0.6) | (0.3, 0.6) | (0.6, 0.3) | (0.1, 0.6) | (0.9, 0.1) | (0.1, 0.8) | (0, 0) |
0.365 | 0.9 | 0.3285 | |
0.39 | 0.89375 | 0.3485625 | |
0.455 | 0.91875 | 0.4180313 | |
0.52 | 0.8875 | 0.4615 | |
0.47 | 0.8875 | 0.417125 | |
0.5 | 0.93125 | 0.465625 | |
0.56 | 0.89375 | 0.5005 | |
0.515 | 0.9 | 0.4635 | |
0.57 | 0.86875 | 0.4951875 | |
0.65 | 0.9125 | 0.593125 | |
0.64 | 0.8875 | 0.568 | |
0 | 0 | 0 |
0.175 | 0.9 | 0.1575 | |
0.13 | 0.89375 | 0.116188 | |
0.12 | 0.93125 | 0.11175 | |
0.21 | 0.9125 | 0.191625 | |
0.2 | 0.9 | 0.18 | |
0.18 | 0.91875 | 0.165375 | |
0.19 | 0.94375 | 0.179313 | |
0.21 | 0.95625 | 0.200813 | |
0.24 | 0.91875 | 0.2205 | |
0.195 | 0.93125 | 0.181594 | |
0.2 | 0.975 | 0.195 | |
0 | 0 | 0 |
Research Article | Research Methodology | GrC (Spatial or Temporal) Perspective | Data Viewpoint with FCA/IF Sets |
---|---|---|---|
[1] | A method to combine time-based granulation and three-way decisions to understand and reason on learned granular structures and discover periodic events. | Spatial and temporal aspects of data granularity | FCA-based single-value attribute |
[7] | The method implements sequential three-way GrC by a spatial–temporal multigranularity learning framework, described with the temporality of data and spatiality of parameters. | Spatial and temporal aspects of data granularity | - |
[31] | A method based on GrC and FCA to focus the temporal aspect and extract the knowledge concerning periodic occurrences of events in data. | Temporal aspect of data granularity. | FCA-based single-value attribute. |
[46] | Temporal, spatial, and spatial–temporal-based trisecting–acting–outcome (TAO) frameworks for the construction of multilevel composite granular structures are introduced. | Spatial, temporal, and spatial–temporal aspects of data granularity | - |
Proposed Approach | This approach analyzes and predict event occurrences, nonoccurrences, and uncertainty of occurrences/nonoccurrences through spatial and temporal aspects given in IF sets’ data using GrC and FCA. | Temporal aspect of data granularity in IF datasets | IF set values using granular computing and the FCA algorithm |
Lattice No. | Results Obtained with Approaches Used [31,35] | Results Obtained with the Proposed Approach |
---|---|---|
0.25 | 0.53 | |
0.25 | 0.58 | |
0.25 | 0.60 | |
0.25 | 0.52 | |
0.25 | 0.63 | |
0.25 | 0.46 | |
0.25 | 0.44 |
COV, SP and Q Value Obtained with Approaches Used in [44,45] | COV, SP and Q Value Obtained with Proposed Approach | |||||
---|---|---|---|---|---|---|
IF Concepts | COV | SP | Q Value | COV | SP | Q Value |
0.66 | 0.175 | 0.1155 | 0.365 | 0.95 | 0.34675 | |
0.52 | 0.425 | 0.221 | 0.38 | 0.89 | 0.3382 | |
0.6 | 0.15 | 0.09 | 0.4 | 0.96 | 0.384 | |
0.4 | 0.325 | 0.13 | 0.5 | 0.92 | 0.46 | |
0.4 | 0.25 | 0.1 | 0.5 | 0.93 | 0.465 | |
0.52 | 0.275 | 0.143 | 0.41 | 0.93 | 0.3813 | |
0.48 | 0.325 | 0.156 | 0.44 | 0.92 | 0.4048 | |
0.4 | 0.325 | 0.13 | 0.55 | 0.92 | 0.506 | |
0.4 | 0.3 | 0.12 | 0.45 | 0.92 | 0.414 | |
0.32 | 0.325 | 0.104 | 0.59 | 0.92 | 0.5428 | |
0.38 | 0.25 | 0.095 | 0.585 | 0.94 | 0.5499 | |
0.32 | 0.35 | 0.112 | 0.57 | 0.91 | 0.5187 | |
1 | 0 | 0 | 0 | 0 | 0 |
COV, SP and Q Value Obtained with Approaches Used in [44,45] | COV, SP and Q Value Obtained with Proposed Approach | |||||
---|---|---|---|---|---|---|
IF Concepts | COV | SP | Q Value | COV | SP | Q Value |
0.66 | 0.4 | 0.264 | 0.365 | 0.9 | 0.328 | |
0.56 | 0.425 | 0.238 | 0.39 | 0.89375 | 0.348 | |
0.62 | 0.325 | 0.2015 | 0.455 | 0.91875 | 0.418 | |
0.44 | 0.45 | 0.198 | 0.52 | 0.8875 | 0.462 | |
0.54 | 0.45 | 0.243 | 0.47 | 0.8875 | 0.417 | |
0.5 | 0.275 | 0.1375 | 0.5 | 0.931 | 0.466 | |
0.42 | 0.425 | 0.179 | 0.56 | 0.894 | 0.5005 | |
0.42 | 0.4 | 0.168 | 0.515 | 0.9 | 0.464 | |
0.36 | 0.525 | 0.189 | 0.57 | 0.86875 | 0.495 | |
0.4 | 0.35 | 0.14 | 0.65 | 0.9125 | 0.593 | |
0.34 | 0.45 | 0.153 | 0.64 | 0.8875 | 0.568 | |
1 | 0 | 0 | 0 | 0 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ali, I.; Li, Y.; Pedrycz, W. Granular Computing Approach to Evaluate Spatio-Temporal Events in Intuitionistic Fuzzy Sets Data through Formal Concept Analysis. Axioms 2023, 12, 407. https://doi.org/10.3390/axioms12050407
Ali I, Li Y, Pedrycz W. Granular Computing Approach to Evaluate Spatio-Temporal Events in Intuitionistic Fuzzy Sets Data through Formal Concept Analysis. Axioms. 2023; 12(5):407. https://doi.org/10.3390/axioms12050407
Chicago/Turabian StyleAli, Imran, Yongming Li, and Witold Pedrycz. 2023. "Granular Computing Approach to Evaluate Spatio-Temporal Events in Intuitionistic Fuzzy Sets Data through Formal Concept Analysis" Axioms 12, no. 5: 407. https://doi.org/10.3390/axioms12050407
APA StyleAli, I., Li, Y., & Pedrycz, W. (2023). Granular Computing Approach to Evaluate Spatio-Temporal Events in Intuitionistic Fuzzy Sets Data through Formal Concept Analysis. Axioms, 12(5), 407. https://doi.org/10.3390/axioms12050407