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Abstract: Knowledge discovery through spatial and temporal aspects of data related to occurrences
of events has many applications in digital forensics. Specifically, in electronic surveillance, it is helpful
to construct a timeline to analyze information. The existing techniques only analyze the occurrence
and co-occurrence of events; however, in general, there are three aspects of events: occurrences
(and co-occurrences), nonoccurrences, and uncertainty of occurrences/non-occurrences with respect
to spatial and temporal aspects of data. These three aspects of events have to be considered to
better analyze periodicity and predict future events. This study focuses on the spatial and temporal
aspects given in intuitionistic fuzzy (IF) datasets using the granular computing (GrC) paradigm;
formal concept analysis (FCA) was used to understand the granularity of data. The originality of the
proposed approach is to discover the periodicity of events data given in IF sets through FCA and the
GrC paradigm that helps to predict future events. An experimental evaluation was also performed to
understand the applicability of the proposed methodology.

Keywords: granular computing; formal concept analysis; intuitionistic fuzzy sets; periodicity; spatial
and temporal aspects; knowledge discovery
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1. Introduction

An event is the occurrence of something at some place and time which involves some
actors as objects and spatio-temporal features as attributes. In theliterature, the idea of
spatial, temporal, and spatio-temporal co-occurrences can be found. In general, spatial
co-occurrence is defined as when two or more events occur at the same place, temporal
co-occurrence as when a number of events occur at the same time or in the same time-
interval, and spatio-temporal co-occurrence as when events occur at the same place and
time. Periodical events are those that occur at the same time intervals, for example, an event
that occurs every day, weekend, month, or year. In the application domain, it is important
to analyze these aspects of events. In the context of smart video surveillance, it is possible
to discover the periodical and same-place movements of pedestrians to predict a crime
before it happens. Moreover, in the context of intuitionistic fuzzy (IF) sets, there are some
membership and nonmembership values that can be indicated for events occurring at some
place and time. Existing approaches only work on occurrences and co-occurrences of events;
however, in real life, there can be three aspects: occurrences (and co-occurrences), nonoc-
currences, and the uncertainty of occurrences/nonoccurrences. The limitation of focusing
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only on the occurrences and co-occurrences of events is that it indicates the data related to
event occurrences that may be missing the elicitation of complete and important knowledge
related to event nonoccurrences, as well as the uncertainty of occurrences/non-occurrences.
Motivated by these limitations, this research provides a novel approach based on granular
computing (GrC) to discover these three aspects of events at the same places and in the peri-
odical form in the IF sets, where µ (membership), γ (non-membership), and π (uncertainty)
values indicate the occurrences (and co-occurrences), nonoccurrences, and the uncertainty
of occurrences/nonoccurrences of events, respectively. GrC was used to discover the peri-
odicity in data at various abstraction levels. Moreover, formal concept analysis (FCA) was
used to discover the granulation levels and process the granulation measures to understand
the IF concepts, where the events indicated as objects and spatio-temporal occurrences
showed the attributes of lattices formed by formal concepts. The originality of the proposed
approach is to discover the periodicity of spatial–temporal occurrences data of events given
in IF sets through GrC and FCA. Moreover, this approach helps predict the occurrence
(co-occurrence), nonoccurrence, and uncertainty of occurrence/nonoccurrence of events
for spatial and temporal aspects of data through IF sets. The motivation for the use of
IF sets instead of fuzzy sets in this proposed approach is the three-tuple nature of the
IF sets, which contain the µ (membership), γ (nonmembership), and π (IF set index or
indeterminacy, which expresses the degree of uncertainty) values of the elements. Here, π
is used in the computation of GrC measures i.e., IG and COV that help in the process of
decision making. This paper is organized as follows: Section 2 discusses the related works;
Section 3 provides the definitions of IF sets and FCA specifically used in the context of
the IF sets data; Section 4 explains the GrC; Section 5 explains the proposed methodology;
Section 6 demonstrates the experimental evaluation; Section 7 gives the results and discus-
sion; Section 8 explains the comparison of the proposed approach with existing SOTA (state
of the art) approaches; and Section 9 contains the conclusion and future work, followed by
the references.

2. Related Works

In the literature, research work related to spatio-temporal and periodical occurrences
and co-occurrences can be found. The most important task regarding periodical occurrences
is to determine the data blocks in the whole dataset from which suitable views can be
analyzed. For example, in a dataset of hundred events, discovering seventy events that
always occur on a Sunday may be more interesting than ninety events occurring on the
weekends. For this type of task, views are determined by selecting the temporal attributes
and adjusting the temporal units in a way that helps to create a temporal zoom operation
on data and discover the more interesting data blocks in the form of periodical occurrences.
Depending on the data and objective, some data analysis techniques are required to evaluate
the data blocks aiming to discover the periodical co-occurrences of events. Based on the
GrC paradigm and FCA, different computational approaches are proposed to discover
the spatio-temporal co-occurrences for different purposes. As in [1], FCA as a central
tool for the proposed method is used to combine time-based granulation and three-way
decisions to understand the learned granular structures conceptualizing spatio-temporal
events. Moreover, the GrC is integrated with FCA as concept learning via GrC [2], granular
rule acquisition in decision formal contexts [3], GrC approach based on FCA in fuzzy
datasets [4], granular transformations, and irreducible element judgement [5]. There are
two types of granules in FCA, one is the granule made by the set of objects in formal concept
and the other is the one formed by the individual objects. Some research studies show that
the granule formed by the individual objects play a vital role, with a strong correlation with
object granules, object concepts [5], and granular concepts [6]. Additionally, there exist
many other types of granules in FCA; however, the classification and the criteria for the
classification of information granules in FCA are still an open research direction.

Yang et al. in [7] explained the sequential approach of three-way GrC by a framework
of spatio-temporal multilevel granular structure, described with temporality of data and
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spatiality of parameters. Moreover, in the context of three-way decision approaches in [8],
an IF three-way decision model based on IF sets is proposed to improve the ability to
process complex fuzzy incomplete information systems. Zhao et al., in [9], proposed a
novel spatial–temporal fuzzy information granule (STFIG) model to achieve the multistep
forecasting of time series. In [10], the method puts forward research on the optimal route
planning of traffic multisource routes based on GrC. GrC is used with set theory, shadowed
sets, rough sets, fuzzy sets, etc. In each of these sets’ environments, the granules or the
granulation processing is defined in different ways, as well as a tentative one to find
similarity and bridge the gap between these settings, as described in [11]. Additionally,
the IF sets using an FCA algorithm have already been discussed in the literature [12]; for
example, in [13], the structure of formal concept forming operators is given in the form of
fuzzy dilation and fuzzy erosion operators of bipolar fuzzy mathematical morphology, and
in [14], attribute reduction in IF concept lattices is discussed.

This methodology uses the GrC paradigm and FCA with IF datasets as spatio-temporal
attributes to realize the granulation or abstraction of data related to the periodical timeslots
in temporal attributes of formal contexts, which were formed from the IF datasets; the
granules involving spatio-temporal attributes were used to determine the co-occurrences
of events with respect to space and time. In addition, the granulation measures of lattices
made from the formal contexts of IF sets were discussed, such as information granulation
(IG), coverage (COV), specificity (SP), and unique index (Q) value, to evaluate the granule
according to its information related to spatio-temporal and periodical co-occurrences.

3. Preliminaries
3.1. Intuitionistic Fuzzy (IF) Sets

In [15], the notion of fuzzy sets is given as

C
′
=
{
〈x, µC′ (x)〉 | x ∈ X

}
where µC′ (x) ∈ [0, 1] is the membership function of the fuzzy set C

′
. The notion of IF

set [16–18] is given as
C = {〈x, µC(x), γC(x)〉 | x ∈ X},

where µC : X → [0, 1] and γC : X → [0, 1], such that

0 ≤ µC(x) + γC(x) ≤ 1.

Here, µC(x), γC(x) ∈ [0, 1] indicate the degree of membership and the degree of non-
membership of x ∈ C, respectively. Each fuzzy set in terms of IF sets can be represented as

C =
{
〈x, µC′ (x), 1− µC′ (x)〉 | x ∈ X

}
.

In addition to this, the important concept of each IF set C in X is given as

πC(x) = 1− µC(x)− γC(x).

Here, πC(x) is called the “hesitation degree” of x ∈ C, which indicates the uncer-
tainty or the lack of the knowledge of whether x ∈ C or x /∈ C. Moreover, it is clear
that 0 ≤ πC(x) ≤ 1, ∀x ∈ X. This hesitation degree plays an important role in dis-
tance [19,20], similarity [20], and entropy [21,22], which are key measures that are used
specially in the information processing tasks. Additionally, hesitation degree also plays
a significant role in image processing [23], multicriteria group decision making [24], IF
decision trees [25], genetic algorithms [26], and many other situations. In addition to this,
let C1, C2 ∈ IF(U), C1 ⊆ C2 ⇔ µC1(x) ≤ µC2(x) and γC1(x) ≥ γC2(x), ∀x ∈ U. If both
C1 ⊆ C2 and C2 ⊆ C1 then, C1 = C2 and C2 = C1. The universe set U and null set ∅ are the
special type of IF sets, where U = {〈x, 1, 0〉 | x ∈ U} and ∅ = {〈x, 0, 1〉 | x ∈ U}.
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3.2. Formal Concept Analysis (FCA)

The FCA method was proposed in early 1980 by R. Wille for when a set of objects share
a set of attributes. The foundation of FCA is built on the notions of lattice and set theory.
This method outputs two sets of data. The first one provides the hierarchical relationship of
constructed concepts in the form of a diagram called “Concept Lattice”. The second set of
data provides the list of the interdependencies among all the attributes in a formal context.

Definition 1. In FCA, the relation K = (G, M, I) is called a formal context, where G and M
denote the set of objects and set of attributes, respectively. In addition to this, I ⊆ G×M shows
the relationship between G objects (extents) and M attributes (intents). Moreover, the relation
(g, m) ∈ I shows that the object g has attribute m, which can also be written as gIm.

Definition 2. For a subset A ⊆ G of objects then, the subset of the attributes common to all the
objects in A is given as

A ↑= {m ∈ M | ∀g ∈ A, gIm}.

Likewise, given a subset B ⊆ M of attributes, the subset of objects having all the attributes in
set B is given as

B ↓= {g ∈ G | ∀m ∈ B, gIm}.

Definition 3 ([26]). A formal context K = (G, M, I) is defined as a pair (A, B), where A ⊆ G,
B ⊆ M and A ↑= B, B ↓= A, where A denotes the objects (extents) and B indicates the attributes
(intents) of the pair (A, B). Let (A1, B1) and (A2, B2) be the two formal concepts of a formal context
K = (G, M, I); (A1, B1) is called a superconcept of (A2, B2), and (A2, B2) is called a subconcept
of (A1, B1) if it satisfies the equivalent condition given as

(A1, B1) ≤ (A2, B2)⇔ A1 ⊆ A2 ⇔ B2 ⊆ B1

The set of all the superconcept and subconcept interrelations construct a design structure
known as a lattice. The lattice is an abstract structure with join (denoted by “∨”) and meet (denoted
by “∧”) operations. The above expression in this definition, in the form of join and meet, is

(A1, B1) ∨ (A2, B2) = ((A1 ∪ A2) ↓↑, B1 ∩ B2),

(A1, B1) ∧ (A2, B2) = (A1 ∩ A2, (B1 ∪ B2) ↓↑)

where “∨” and “∧” indicate the supermum and infimum operations, respectively.

For any ∀g ∈ G, the pair (g ↑↓, g ↑) is called the object concept, and ∀m ∈ M, the
pair (m ↑↓, m ↑) is called the attribute concept. In a lattice diagram, when two branches
join below, it is called a join operation “∨”, and the point where two branches meet above
is known as a meet operation “∧”. This interprets the relationship among the concepts,
objects, and attributes. The nodes in this diagram express the concepts. However, this
diagram is a type of directed acyclic graph. In IF sets, FCA is used for decision making,
data analysis, knowledge discovery, and especially for forecasting purposes.

Definition 4. Let C1, C2 ∈ IF(U) be the two IF sets, given as

C1 =
{(

x, µC1(x), γC1(x)
)
| x ∈ U

}
,

C2 =
{(

x, µC2(x), γC2(x)
)
| x ∈ U

}
.

where µC1(x), γC1(x) : U → [0, 1] and µC2(x), γC2(x) : U → [0, 1] such that

0 ≤ µC1(x) + γC1(x) ≤ 1,

0 ≤ µC2(x) + γC2(x) ≤ 1.
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Here, µC1(x), γC1(x) ∈ [0, 1] indicate the degree of membership and nonmembership of
x ∈ C1, and µC2(x), γC2(x) ∈ [0, 1] indicate the degree of membership and nonmembership of
x ∈ C2 IF sets, such that ∀x ∈ U.

Definition 5. Let C1, C2 ∈ IF(U) be the two IF sets given in Definition 4, then these two sets
through FCA algorithm are evaluated as

C1,2 =
{(

x, min
(

µC1(x), µC2(x)
)
, max

(
γC1(x), γC2(x)

))
| x ∈ U

}
.

These are the basic mathematical definitions which define the FCA and its operations
with respect to IF sets. Moreover, later sections explain it more in detail by means of the
GrC approach.

4. Granular Computing (GrC)

GrC is an emerging field for information processing [27,28] through the basic building
blocks of information, named granules. In the data science literature, the granule is defined
as the cluster or set of objects extracted or grouped together by similarity, uniformity,
proximity, predictability, resemblance, physical adjacency, or functionality. These granules
can be represented in interval values, rough sets, neutrosophic sets [29], fuzzy sets [30], IF
sets, etc. Moreover, these granules can be partitioned into finer or smaller granules called
subgranules. In order to compose and decompose the granules, specific measures called
granulation measures are employed.

In this study, the GrC approach is used with FCA by considering the IF datasets
containing various events as objects having spatio-temporal attributes. Moreover, different
GrC measures are used, including IG, COV, SP, and Q value for the IF datasets. Here,
for the first decomposition, IF datasets are decomposed in different granules, while each
granule consists of the set of events as objects having spatio-temporal attributes. In the first
decomposition, the IG of each granule is determined, and the granule (having more IG) is
selected for further granulation measures i.e., COV and SP. For the second decomposition,
the granule determined in the first decomposition (for the further granulation measures) is
further decomposed into subgranules, the IG of each subgranule is found, the subgranule
(with higher IG) for further granulation measures is determined, and so on. This process
is performed until the granules/subgranules are obtained, with interesting granulation
measures having more COV, less SP, and higher Q value.

5. Proposed Methodology
5.1. Periodic Occurrences (Co-Occurrences), Nonoccurrences, and Uncertainty of
Occurrences/Nonoccurrences of Events in the Form of IF Datasets

In real life, an event can be represented by spatio-temporal occurrences and co-
occurrences. Based on the specific time unit, different timelines can be assumed for the
temporal information related to the occurrences and co-occurrences of events [31]. For ex-
ample, the time unit is a day or a month, considering the timeline based on the day or
the month, respectively. A timeslot is the sequence of time units (days or months); if the
timeline is considered based on the days, then each day corresponds to a timeslot. Hence,
different timelines can provide temporal granularity.

In the literature, spatial and temporal events data are evaluated through FCA and
the GrC paradigm using classical single-attribute value in FCA data [31]. This proposed
methodology uses the IF datasets, in which events occur at a certain place (spatial aspect)
and time (temporal aspect) with certain membership and nonmembership values.

Definition 6. Let Gi be the set of objects having Mj set of attributes, where i = 1, 2, 3, · · ·
and j = 1, 2, 3, · · · denote the number of objects and attributes, respectively, such that each Mj
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attribute has IF set values µi,j and γi,j as membership and nonmembership of the Gi object in the
Mj attribute, respectively.

Mj =
{(

x, µi,j(x), γi,j(x)
)
| ∀x ∈ Mj

}
Definition 7. Formally, consider an IF formal context Ki,j = (Gi, Mj, I) such that Gi, Mj, and
I indicate the objects, attributes (given in Definition 6), and relation between the objects and the
attributes, respectively, as shown in Table 1, where

Gi = {G1, G2, G3, · · ·},
Mj = {M1, M2, M3, · · ·}.

Definition 8. Let a subset Gi ⊆ G of the objects, then the subset of the attributes to all the objects
in Gi is given as

Gi ↑= {m ∈ M | ∀g ∈ Gi, gIm}

Likewise, given a subset Mj ⊆ M of attributes, the subset of objects having all the attributes
in set Mj is given as

Mj ↓=
{

g ∈ G | ∀m ∈ Mj, gIm
}

Definition 9. According to FCA, for an IF formal concept of a formal context Ki,j = (Gi, Mj, I),
let there be a pair (Gi, Mj), where Gi ⊆ G, Mj ⊆ M and Gi ↑= Mj, Mj ↓= Gi, where Gi denotes
the objects (extents) and Mj indicates the attributes (intents) of the pair (Gi, Mj).

Definition 10. Let the IF concept lattice Li,j = (Gi, Mj, I), constructed with all the concepts of IF
formal concepts of Ki,j = (Gi, Mj, I), such that (G1, M1) and (G2, M2) are the two IF formal concepts
of the IF formal context Ki,j = (Gi, Mj, I), where (G1, M1) is called a superconcept of (G2, M2), and
(G2, M2) is called a subconcept of (G1, M1) if it satisfies the equivalent condition given as

(G1, M1) ≤ (G2, M2)⇔ G1 ⊆ G2 ⇔ M2 ⊆ M1

Definition 11. The set of all the IF superconcept and the subconcept interrelations construct a
lattice. The lattice is an abstract structure with join (denoted by “∨”) and meet (denoted by “∧”)
operations. Hence, the above expression of the IF superconcept and subconcept in this definition,
in the form of join and meet, is

(G1, M1) ∨ (G2, M2) = ((G1 ∪ G2) ↓↑, M1 ∩ M2),

(G1, M1) ∧ (G2, M2) = (G1 ∩ G2, (M1 ∪ M2) ↓↑)

In this mathematical form, “∨” and “∧” indicate the supermum and infimum operations of IF
formal concepts, respectively.

Definition 12. The IF formal concept of the given set of Gi objects with Mj attributes having the
IF values (µi,j, γi,j)→ [0, 1] in Ki,j = (Gi, Mj, I) formal context is evaluated as(

min(µi,j), max(γi,j)
)

where i ∈ G, j ∈ M.

Example 1. Let the IF formal concept for G1 and G2 objects having Mj (j = 1, 2, 3, · · · ) attributes
(given in Table 1) be computed as

G12 =
[(

min(µ1,1, µ2,1), max(γ1,1, γ2,1)
)
,
(
min(µ1,2, µ2,2), max(γ1,2, γ2,2)

)
,(

min(µ1,3, µ2,3), max(γ1,3, γ2,3)
)
, · · · ,

(
min(µ1,j, µ2,j), max(γ1,j, γ2,j)

)]
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In this prposed methodology, the objects Gi indicate the events, and the attributes Mj
indicate the occurrence of those events at a certain place and time, with certain member-
ship µ (occurrence/co-occurrence), nonmembership γ (nonoccurrence), and uncertainty π
(uncertainty of occurrence/nonoccurrence) values provided in the IF datasets. For example,
in Table 1, let G1 be one of the events, M1 and M2 be two places, and M3, · · · , Mj be the
number of times an event has occurred with some µ membership of occurrence and γ
nonmembership of nonoccurrence values; then, it can be said that the event G1 has occurred
at M1 and M2 places at M3, · · · , Mj different times with µ happening and γ not happening
values of events.

Table 1. Objects having attributes in the form of IF sets.

M1 M2 M3 · · · Mj

G1 µ1,1, γ1,1 µ1,2, γ1,2 µ1,3, γ1,3 · · · µ1,j, γ1,j
G2 µ2,1, γ2,1 µ2,2, γ2,2 µ2,3, γ2,3 · · · µ2,j, γ2,j
G3 µ3,1, γ3,1 µ3,2, γ3,2 µ3,3, γ3,3 · · · µ3,j, γ3,j
...

...
...

...
...

...
Gi µi,1, γi,1 µi,2, γi,2 µi,3, γi,3 · · · µi,j, γi,j

Example 2. Let M3 be the one-year temporal attribute showing the events occurring in the M3
year. For the temporal granulation of the M3 year attribute, let Q1, Q2, Q3, and Q4 be the four
quarters, indicating data for January, February, and March; April, May, and June; July, August,
and September; and October, November, and December, given that each month’s data are a basic
granule. Hence, for the first decomposition, there will be four granules containing data for events
occurring in the four quarters of the year. For example, E1 event’s data in the Q1 quarter of the
M3 year in the form of IF sets is given as (0.3, 0.6), where µ = 0.3, (membership) indicates the
E1 event’s occurrence (co-occurrence) and γ = 0.6 (nonmembership) indicates the E1 event’s
nonoccurrence. Moreover, π = 0.1 (IF set index or indeterminacy) indicates the E1 event’s
uncertainty of occurrence/nonoccurrence, which is used to compute the IG later in this section.

Existing approaches only work on the periodical occurrences and co-occurrences of
events using the GrC paradigm and FCA by considering single-value attributes for for-
mal concepts. However, in the proposed approach, three aspects of the phenomenon of
events are considered: event occurrence (co-occurrence), nonoccurrence, and the uncer-
tainty of occurrence/nonoccurrence using GrC and the FCA algorithm by considering the
IF datasets. Furthermore, the events data are represented in the form of three-tuple IF
datasets as µ (membership), γ (nonmembership), and π (IF set index or indeterminacy),
indicating the event occurrence (co-occurrence), nonoccurrence, and the uncertainty of
occurrence/nonoccurrence, respectively. This timed granulation of occurring event data is
further explained and analyzed for the knowledge discovery in Section 6.

Here, the IF datasets (containing the objects and attributes relationship) are divided
into multiple parts, and each part is considered as the IF granule. Moreover, the lattice of
each IF granule is designed for the data analysis using FCA and IF granulation measures.

5.2. Computation of an IF Granule

In [32], fuzzy information granules and the hierarchical structures of IF rough sets
from the viewpoint of GrC are presented. In addition to this, FCA is also widely used in IF
sets, such as the research study in [33], which mainly focuses on the FCA in an IF formal
context. Moreover, in [33], the primitive notions in concept lattice theory are also extended
to the IF environment. In this research, the idea of IF granule evaluation is performed by
calculating IG, COV, SP, and the Q value of the IF concept lattice, where each concept
lattice is treated as an individual granule.
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5.3. Information Granulation (IG)

IG (IG) : IG = |1− IE| provides the information on the granule within the lattice by
taking into account the extensional parts (objects) included in the granule [31]. Information
entropy (IE) is an important measure to evaluate the uncertainty in data [34,35], which
is why the term |1− IE| gives the total IG obtained from the data granule or the concept
lattice. According to Shannon’s theory, IE is the key information measure in data analysis.
Based on the IF sets, different types of IE measures may be needed, depending upon the
evaluation. In [36], the authors introduce IE into the field of FCA to quantify the weight of
the concepts’ intent. A type of nonprobabilistic entropy measure for IF is proposed in [37].
Here, in [37], the entropy measure is the result of the IF sets’ geometric interpretation,
and it uses the ratio of distances between them, defined in terms of the ratio of the IF sets’
cardinalities of F ∩ Fc and F ∪ Fc, where Fc is the complement of the F IF set. Two methods
to determine the attribute weights are proposed in [38]. The first is when the information
regarding the attributes is completely unknown, and the second is when partial information
about attribute weights is known. Moreover, in [38], the attribute weights’ identification
based on the IF entropy is offered in the context of IF sets. In the literature, every type
of uncertainty measure, such as information Shannon entropy, information granularity,
rough entropy, and IE, is called by a common name: information granularity. The distance-
based information granularity for IF and multigranulation IF granular spaces is presented
in [39]; moreover, the author used this distance-based information granularity to construct
a novel hierarchical structure on such spaces. In [40], the authors compute the information
granularity by taking into account the number of objects (extensional parts) included in
the granule; hence, in this study, IG and IE provide the framework to evaluate the set of
granulation. Let K = (G, M, I) be the IF formal context of IF granule and L = (G, M, I) be
its corresponding lattice. The first granulation measure for the designed lattice of IF formal
context is given as

IG(L) =
1
G ∑

[
1
n

n

∑
j=1

1−
(

γj +
πj

2

)]
, (1)

where “G” is the number of objects involved in the IF granule, “n” is the number of
attributes of each object, j = 1, 2, 3, · · · shows the number of attributes, and “γj” and “πj”
are the nonmembership and hesitancy degree of the “jth” attribute. For the different IF
formal contexts from the IF datasets, Kx = (Gx, M, Ix) and Lx = (Gx, M, Ix), where Kx
indicates the formal contexts, Lx indicates their corresponding lattices, and x = 1, 2, 3, · · ·
denotes the number of formal contexts and their lattices. If the IG of lattice L1 = (G1, M, I1) is
greater than that of L2 = (G2, M, I2), then the K1 formal context contains more IG and is more
interesting with respect to providing spatio-temporal information in the IF GrC perspective.

Let E1, E2, E3, and E4 be the four events as objects; Place1, Place2, Place3, and Place4 be
the four spatial attributes; and Q1 and Q2 be the two parts of one-year data, such that Q1
consists of Jan, Feb, Mar, Apr, May, and June and Q2 consists of July, Aug, Sep, Oct, Nov,
and Dec temporal attributes data in the form of IF sets, as given in the Table 2. Furthermore,
let the events E1, E2, E3, and E4 occur at the given spatiality, with Q1 temporality in the K1
formal context and with Q2 temporality in the K2 formal context.

Table 2. Four Events as Objects with Four Spatial and Two Temporal Attributes Data.

Place1 Place2 Place3 Place4 Q1 Q2

E1 (0.9, 0.1) (0.6, 0.2) (0.3, 0.7) (0.8, 0.1) (0.3, 0.6) (0.9, 0.0)

E2 (0.3, 0.5) (0.5, 0.5) (0.8, 0.2) (0.2, 0.5) (0.7, 0.2) (0.8, 0.1)

E3 (0.8, 0.2) (0.6, 0.2) (0.7, 0.1) (0.2, 0.7) (0.4, 0.6) (0.1, 0.8)

E4 (0.2, 0.6) (0.3, 0.6) (0.6, 0.3) (0.1, 0.6) (0.2, 0.8) (0.7, 0.2)

Hence, the IG of K1 and K2 formal contexts is given as
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IG(K1) =

1
4 ∑

{
1
5

(
1−

(
0.1 +

0
2

))
+

(
1−

(
0.2 +

0.2
2

))
+

(
1−

(
0.7 +

0
2

))
+

(
1−

(
0.1 +

0.1
2

))
+

(
1−

(
0.6 +

0.1
2

))}
+{

1
5

(
1−

(
0.5 +

0.2
2

))
+

(
1−

(
0.5 +

0
2

))
+

(
1−

(
0.2 +

0
2

))
+

(
1−

(
0.5 +

0.3
2

))
+

(
1−

(
0.2 +

0.1
2

))}
+{

1
5

(
1−

(
0.2 +

0
2

))
+

(
1−

(
0.2 +

0.2
2

))
+

(
1−

(
0.1 +

0.2
2

))
+

(
1−

(
0.7 +

0.1
2

))
+

(
1−

(
0.6 +

0
2

))}
+{

1
5

(
1−

(
0.6 +

0.2
2

))
+

(
1−

(
0.6 +

0.1
2

))
+

(
1−

(
0.3 +

0.1
2

))
+

(
1−

(
0.6 +

0.3
2

))
+

(
1−

(
0.8 +

0
2

))}
,

IG(K1) = 0.53
IG(K2) =

1
4 ∑

{
1
5

(
1−

(
0.1 +

0
2

))
+

(
1−

(
0.2 +

0.2
2

))
+

(
1−

(
0.7 +

0
2

))
+

(
1−

(
0.1 +

0.1
2

))
+

(
1−

(
0 +

0.1
2

))}
+{

1
5

(
1−

(
0.5 +

0.2
2

))
+

(
1−

(
0.5 +

0
2

))
+

(
1−

(
0.2 +

0
2

))
+

(
1−

(
0.5 +

0.3
2

))
+

(
1−

(
0.1 +

0.1
2

))}
+{

1
5

(
1−

(
0.2 +

0
2

))
+

(
1−

(
0.2 +

0.2
2

))
+

(
1−

(
0.1 +

0.2
2

))
+

(
1−

(
0.7 +

0.1
2

))
+

(
1−

(
0.8 +

0.1
2

))}
+{

1
5

(
1−

(
0.6 +

0.2
2

))
+

(
1−

(
0.6 +

0.1
2

))
+

(
1−

(
0.3 +

0.1
2

))
+

(
1−

(
0.6 +

0.3
2

))
+

(
1−

(
0.2 +

0.1
2

))}
,

IG(K2) = 0.58
Hence, the IG of the K2 IF formal context is greater than the IG of the K1 IF formal

context, implying that the events with given spatial and Q2 temporal attributes are more
interesting with respect to providing more spatio-temporal information in the periodical IF
GrC perspective. Moreover, for the further process, the K2 IF formal context will be decided
for the computation of granulation measures, which is discussed in Section 6.

5.4. Granular Computing Measures for the Interestingness Level of IF Lattice

In the literature, there are various proposed granular measures based on FCA which
identify the interestingness level of the granule. The GrC and FCA measures defined
in [41] and [42], respectively, include COV, SP, stability, robustness, probability, separation,
etc. The most important granular measures are COV and SP, which are used in the GrC
approach based on FCA. In this study, COV, SP, and Q value are used to analyze the
interestingness level of the IF lattice.

5.5. Coverage (COV)

COV is the most important granulation measure to evaluate the granule within the
spatial, temporal, or spatio-temporal granulation perspective [31]. COV indicates the data
granule to represent or cover the given data. The main objective of calculating the COV in
this study is to find the IF lattice granule data objects’ COV which contains the interesting
information. Generally, the larger the data objects being covered the higher the COV of
the interesting information granule. In [43], the concept of COV with invariability and
its interconnections are analyzed from the viewpoint of algebraic properties of a fuzzy
system, including membership function, inclusion, union and intersection, and support and
fuzzy relation. Depending on the nature of granule, the definition of COV can be properly
expressed, as in [44], where the concept of COV is defined with the fuzzy perspective
of GrC. Here, the COV for the IF concept lattice objects using membership values in the
perspective of GrC approach is computed as

COV(C) =

[(
D
G
× 1

N

N

∑
i=1

C
(

xµj

))
+

πj

2

]
, (2)

where “N” is the number of elements in the IF concept lattice C granule, µj, where j =
1, 2, 3, · · · , is the number of membership values, and πj is the hesitation degree of each
attribute involved in the granule. Here, D shows the involved objects, and G indicates the
total number of objects in the granule. In the above Equation (2), (

πj
2 ) is used because the

uncertainty can be membership or nonmembership of the IF set value.
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The motivation behind the use of Equation (2) is the computation of COV for the
formal concept granule containing the event’s spatio-temporal information in the form of
IF sets. The COV for the IF formal concept as a granule C for the involved objects (events)
D
G [31] is the sum of membership grades [44] 1

N ∑N
i=1 C

(
xµj

)
in the IF formal concept.

Additionally, the term
πj
2 indicates the membership value in the π degree of indeterminacy.

The illustration to compute the COV is given in Example 3.

Example 3. Let X = {x1, x2, x3, x4, x5} and C̃(x) be the IF formal concept of IF formal context,
consisting of E1 event as an involved object with Q1 temporal data given in Table 2, such that

C̃(x) = {(0.9, 0.1, x1), (0.6, 0.2, x2), (0.3, 0.7, x3), (0.8, 0.1, x4), (0.3, 0.6, x5)}.

Let D = 1 and G = 4, because the object involved in the C̃ IF formal concept is one, i.e., E1,
and the total number of objects is four, i.e., E1, E2, E3, and E4, respectively. Moreover, N = 5 is the
number of IF attributes in the data, and πj is the total degree of indeterminacy in all the attributes
of the C̃ IF formal concept.

COV(C) =

[(
1
4
× 1

5

5

∑
i=1

0.9 + 0.6 + 0.3 + 0.8 + 0.3

)
+

0.4
2

]
= 0.34.

5.6. Specificity (SP)

The SP measure is the fundamental granulation measure used to find the abstract,
precise, or specific level of the granule in GrC. SP’s role in IF sets is similar to the role of
entropy in probability theory, as entropy estimates the probability of the specific event
under consideration, which encapsulates the information about the fundamental probability
distribution. The author of [45] states that in expert- and knowledge-based systems, SP
plays a fundamental role in determining the usefulness of the information provided by these
systems. Moreover, an increase in the abstract level of the SP of the information provided
increases the information’s usefulness. For example, a system shows the prediction of
tornado storm occurrences in different states at different times. Additionally, this system,
in most cases, will correctly predict the situation of the tornado’s occurrence in both spatial
and temporal perspectives. This system will not be of much use if it does not determine
which type of precautionary measures should be taken at particular states at a particular
time. This scenario points out a very important uncertainty principle of information theory,
which is called the specificity–correctness trade-off.

An important idea to note is that the higher the SP, the lower the granule level
of abstraction. In this study, the concept of SP is used for the spatio-temporality (two
perspectives) of the IF concept lattice granule measure by using the len(d) and range
concepts. As explained in [31], len(d) and range indicate the length of the involved temporal
slot and the sum of the lengths of all temporal slots, respectively. According to refs. [31,45],
SP is measured as follows:

SP(C) =
[

1− len(d)
range

]
×
[

α− 1
n− 1 ∑

x∈X 6=X∗
G(x)

]
. (3)

Here, the IF set’s concept lattice is considered. Let X = {x1, x2, x3, · · · , xn} be the set
of attributes in set X and C be the IF set with (C+(x), C−(x)) membership and nonmem-
bership of the IF ordered pair. In Equation (3) α = Maxx[C+(x)], assuming that it occurs at
xm such that α = C+(xn), ∀xn 6= xm, calculate G(x) = α ∧ (1− C−(x)) to compute the SP
of IF set C [45]. The illustration of calculating SP is given in Example 4.
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Example 4. Let X = {x1, x2, x3, x4, x5} and C̃(x) be the IF formal concept, such that

C̃(x) = {(0.9, 0.1, x1), (0.6, 0.2, x2), (0.3, 0.7, x3), (0.8, 0.1, x4), (0.3, 0.6, x5)}.

Here, the value of α = 0.9 occurs in x1, then G(x) = α ∧ (1− C−(x)) is computed for the
x 6= x1 as

G(x2) = 0.9∧ (1− 0.2) = 0.8,

G(x3) = 0.9∧ (1− 0.7) = 0.3,

G(x4) = 0.9∧ (1− 0.1) = 0.9,

G(x5) = 0.9∧ (1− 0.6) = 0.4.

For example, C̃(x) is one of the IF formal concepts of the IF formal context, with Q1
temporal data given in Table 2; then, len(d) = 6 and range = 12.

SP(C̃(x)) =
[

1− 6
12

]
×
[

0.9− 1
5− 1 ∑(0.8 + 0.3 + 0.9 + 0.4)

]
= 0.15.

The SP of individual IF concept lattice granules is calculated in Section 6.

5.7. Unique Index (Q) Value

In ref. [31], the authors define the aggregation of COV and SP as the Q value. In
the Q value, the COV(C) determines the objects representing the IF concept lattice granule
COV; on the other hand, SP(C) indicates the SP for the IF concept lattice granule in the
perspectives of spatial and temporal attributes using the GrC approach. The mathematical
measure to compute the Q value is given as

Q(C) = COV(C)× (SP(C))ζ (4)

Here, the exponent on SP, “ζ”, is the aspect of the SP. It shows the change in the
partition level of the data. Moreover, the higher the value of “ζ”, the more important the
aspect of the SP. The idea of “ζ” is more understandable later in the experimental analysis.
In ref. [31], the authors also propose the average Q value of data granules; here, the IF
concept lattice granule average Q value can be computed as follows:

Q(L) = ∑
(A,B)∈L

Q(C)
n

(5)

In this expression, the IF concept lattice granule C shows the object or the set of objects
A, which contains the attributes in the form of membership and nonmembership B of the
IF set.

To assess different hierarchical levels of data, granulation measures can be compared
by checking which granulation level provides more interesting results. To assess the hierar-
chical levels, a particular attribute is decomposed to check whether the data granulation
provides improved results over the previous ones. Here, the focus was spatial and tempo-
ral attributes. Suppose that temporal attributes are decomposed, such that T denotes the
temporal attribute, and after decomposing T in n attributes {T1, T2, T3, · · · , Tn}, it can be
determined through the granulation measures which temporal decomposition provides
more interesting results. Additionally, the formal context related to the T temporal attribute
is shown as K = (G, M, I), while that related to the decomposed temporal attributes,
i.e., T1, T2, T3, · · · , Tn, is given by K

′
= (G

′
, M

′
, I
′
). Moreover, the granulation measures

are expressed for different hierarchical levels accordingly. With this, the COV for different
granularity levels can be shown as

COV(C) ≥ COV(C
′
) (6)
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In addition to this, the SP for the different granular levels can also hold the following
statement:

SP(C) ≤ SP(C
′
) (7)

To check the granularity level of interestingness for a particular timeslot, [31] can be
computed as

Q(T) = ∑
Q(C)

nT
(8)

where nT is the cardinality of the set of IF formal concepts having T temporal attributes. It
is obvious that the granulation through the decomposition of temporal attribute may lead
to better results, such as

Q(C) ≥ Q(C
′
) (9)

In this way, the level of interestingness is assessed in different hierarchical granule
levels by checking that the greater Q(C) value is the more suitable granule in terms
of interestingness.

6. Experimental Evaluation

In this section, experimental analysis for the proposed IF concept lattice granule
through GrC methodology is discussed. The objective of this study is to analyze the spatio-
temporal perspectives of the IF granule. The results may be used to predict the spatiality
and periodicity of the information granule, particularly when the data are provided in the
IF sets. The datasets used in this experiment consist of the four activity records of providing
information related to spatiality and temporality of the activities executed by a specific
actor or user. Here, the activities are indicated as four events, E1, E2, E3, and E4; four places,
Place1, Place2, Place3, and Place4, denoting spatiality; and four quarters, Q1, Q2, Q3, and Q4,
of the year, denoting temporality, where events indicate objects, and places and quarters
of the year indicate the attributes. The main focus of this experiment is the periodical
granulation of the IF concept lattice granules. There may be hundreds of events indicating
object occurrences at different spatio-temporal attributes, but here, four events as objects
and four spatial and four temporal attributes for the experimental analysis are considered,
as presented in Table 3. In the temporal perspective of attributes, annual periodicity of
time granulation is decomposed into four quarters, Q1, Q2, Q3, and Q4, where these timed
granulation quarters consists of Jan, Feb, and Mar; Apr, May, and June; July, Aug, and
Sep; and Oct, Nov, and Dec, respectively. Additionally, the GrC approach is performed by
considering the periodicity of the temporal attribute, in which the first decomposition of
periodicity is set to months.

Table 3. Four Events as Objects with Four Spatial and Four Temporal Attributes Data.

Place1 Place2 Place3 Place4 Q1 Q2 Q3 Q4

E1 (0.9, 0.1) (0.6, 0.2) (0.3, 0.7) (0.8, 0.1) (0.3, 0.6) (0.9, 0.0) (0.7, 0.2) (0.4, 0.3)

E2 (0.3, 0.5) (0.5, 0.5) (0.8, 0.2) (0.2, 0.5) (0.7, 0.2) (0.8, 0.1) (0.8, 0.2) (0.5, 0.4)

E3 (0.8, 0.2) (0.6, 0.2) (0.7, 0.1) (0.2, 0.7) (0.4, 0.6) (0.1, 0.8) (0.7, 0.3) (0.2, 0.7)

E4 (0.2, 0.6) (0.3, 0.6) (0.6, 0.3) (0.1, 0.6) (0.2, 0.8) (0.7, 0.2) (0.8, 0.1) (0.1, 0.6)

The IF concepts of the given four objects with spatial attributes in the Q1 quarter of time
granule are (1, C̃1

1)), (2, C̃1
2), (3, C̃1

3), (12, C̃1
4), (13, C̃1

5), (23, C̃1
6), (24, C̃1

7), (123, C̃1
8), (124, C̃1

9),
(234, C̃1

10), (U, C̃1
11)and(∅, C̃1

∅) where:

C̃1
1 = {(0.9, 0.1), (0.6, 0.2), (0.3, 0.7), (0.8, 0.1), (0.3, 0.6)}, C̃1

2 = {(0.3, 0.5), (0.5, 0.5), (0.8, 0.2), (0.2, 0.5), (0.7, 0.2)}
C̃1

3 = {(0.8, 0.2), (0.6, 0.2), (0.7, 0.1), (0.2, 0.7), (0.4, 0.6)}, C̃1
4 = {(0.3, 0.5), (0.5, 0.5), (0.3, 0.7), (0.2, 0.5), (0.3, 0.6)}

C̃1
5 = {(0.8, 0.2), (0.6, 0.2), (0.3, 0.7), (0.2, 0.7), (0.3, o.6)}, C̃1

6 = {(0.3, 0.5), (0.5, 0.5), (0.7, 0.2), (0.2, 0.7), (0.4, 0.6)}
C̃1

7 = {(0.2, 0.6), (0.3, 0.6), (0.6, 0.3), (0.1, 0.6), (0.2, 0.8)}, C̃1
8 = {(0.3, 0.5), (0.5, 0.5), (0.3, 0.7), (0.2, 0.7), (0.3, 0.6)}

C̃1
9 = {(0.2, 0.6), (0.3, 0.6), (0.3, 0.7), (0.1, 0.6), (0.2, 0.8)}, C̃1

10 = {(0.2, 0.6), (0.3, 0.6), (0.6, 0.3), (0.1, 0.7), (0.2, 0.8)}
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C̃1
11 = {(0.2, 0.6), (0.3, 0.6), (0.3, 0.7), (0.1, 0.7), (0.2, 0.8)}, C̃1

∅ = {(1, 0), (1, 0), (1, 0), (1, 0), (1, 0)}

The IF values of the IF formal concepts are evaluated according to the expression(
min(µi,j), max(γi,j)

)
, given in Definition 12. The IF concept’s lattice design of the given

four objects with spatio-temporal attributes with the Q1 quarter of time granule is given in
Figure 1.

Figure 1. IF concept’s lattice diagram of four objects with spatial and Q1 quarter of time granule attributes.

Similarly, the IF concepts of the given four objects with spatial attributes in the Q2 quar-
ter of time granule are(1, C̃2

1), (2, C̃2
2), (3, C̃2

3), (12, C̃2
4), (13, C̃2

5), (23, C̃2
6), (24, C̃2

7), (123, C̃2
8),

(124, C̃2
9), (234, C̃2

10), (1234, C̃2
11), (∅, C̃2

∅) where:

C̃2
1 = {(0.9, 0.1), (0.6, 0.2), (0.3, 0.7), (0.8, 0.1), (0.9, 0.0)}, C̃2

2 = {(0.3, 0.5), (0.5, 0.5), (0.8, 0.2), (0.2, 0.5), (0.8, 0.1)}
C̃2

3 = {(0.8, 0.2), (0.6, 0.2), (0.7, 0.1), (0.2, 0.7), (0.1, 0.8)}, C̃2
4 = {(0.2, 0.6), (0.3, 0.6), (0.6, 0.3), (0.1, 0.6), (0.7, 0.2)}

C̃2
5 = {(0.8, 0.2), (0.6, 0.2), (0.3, 0.7), (0.2, 0.7), (0.1, 0.8)}, C̃2

6 = {(0.3, 0.5), (0.5, 0.5), (0.7, 0.2), (0.2, 0.7), (0.1, 0.8)}
C̃2

7 = {(0.2, 0.6), (0.3, 0.6), (0.6, 0.3), (0.1, 0.6), (0.7, 0.2)}, C̃2
8 = {(0.3, 0.5), (0.5, 0.5), (0.3, 0.7), (0.2, 0.7), (0.1, 0.8)}

C̃2
9 = {(0.2, 0.6), (0.3, 0.6), (0.3, 0.7), (0.1, 0.6), (0.7, 0.2)}, C̃2

10 = {(0.2, 0.6), (0.3, 0.6), (0.6, 0.3), (0.1, 0.7), (0.1, 0.8)}
C̃2

11 = {(0.2, 0.6), (0.3, 0.6), (0.3, 0.7), (0.1, 0.7), (0.1, 0.8)}, C̃2
∅ = {(1, 0), (1, 0), (1, 0), (1, 0), (1, 0)}

The IF concept’s lattice design of the given four objects with spatio-temporal attributes
with the Q2 quarter of time granule is given in Figure 2.

Moreover, the IF concepts of the given four objects with spatial attributes in the Q3 quar-
ter of time granule are (1, C̃3

1), (2, C̃3
2), (3, C̃3

3), (4, C̃3
4), (12, C̃3

5), (13, C̃3
6), (23, C̃3

7), (24, C̃3
8),

(123, C̃3
9), (124, C̃3

10), (234, C̃3
11), (1234, C̃3

12), (∅, C̃3
∅) where:

C̃3
1 = {(0.9, 0.1), (0.6, 0.2), (0.3, 0.7), (0.8, 0.1), (0.7, 0.2)}, C̃3

2 = {(0.3, 0.5), (0.5, 0.5), (0.8, 0.2), (0.2, 0.5), (0.8, 0.2)}
C̃3

3 = {(0.8, 0.2), (0.6, 0.2), (0.7, 0.1), (0.2, 0.7), (0.7, 0.3)}, C̃3
4 = {(0.2, 0.6), (0.3, 0.6), (0.6, 0.3), (0.1, 0.6), (0.8, 0.1)}

C̃3
5 = {(0.3, 0.5), (0.5, 0.5), (0.3, 0.7), (0.2, 0.5), (0.7, 0.2)}, C̃3

6 = {(0.8, 0.2), (0.6, 0.2), (0.3, 0.7), (0.2, 0.7), (0.7, 0.3)}
C̃3

7 = {(0.3, 0.5), (0.5, 0.5), (0.7, 0.2), (0.2, 0.7), (0.7, 0.3)}, C̃3
8 = {(0.2, 0.6), (0.3, 0.6), (0.6, 0.3), (0.1, 0.6), (0.8, 0.2)}

C̃3
9 = {(0.3, 0.5), (0.5, 0.5), (0.3, 0.7), (0.2, 0.7), (0.7, 0.3)}, C̃3

10 = {(0.2, 0.6), (0.3, 0.6), (0.3, 0.7), (0.1, 0.6), (0.7, 0.2)}
C̃3

11 = {(0.2, 0.6), (0.3, 0.6), (0.6, 0.3), (0.1, 0.7), (0.7, 0.3)}, C̃3
12 = {(0.2, 0.6), (0.3, 0.6), (0.3, 0.7), (0.1, 0.7), (0.7, 0.3)}

C̃3
∅ = {(1, 0), (1, 0), (1, 0), (1, 0), (1, 0)}
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Figure 2. IF concept’s lattice diagram of four objects with spatial and Q2 quarter of time granule attributes.

The IF concept’s lattice design of the given four objects with spatio-temporal attributes
with the Q3 quarter of time granule is given in Figure 3.

Figure 3. IF concept’s lattice diagram of four objects with spatial and Q3 quarter of time granule attributes.

Similarly, the IF concepts of the given four objects with spatial attributes in the Q4 quar-
ter of time granule are (1, C̃4

1), (2, C̃4
2), (3, C̃4

3), (12, C̃4
4), (13, C̃4

5), (23, C̃4
6), (24, C̃4

7), (123, C̃4
8),

(124, C̃4
9), (234, C̃4

10), (1234, C̃4
11), (∅, C̃4

∅) where:
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C̃4
1 = {(0.9, 0.1), (0.6, 0.2), (0.3, 0.7), (0.8, 0.1), (0.4, 0.3)}, C̃4

2 = {(0.3, 0.5), (0.5, 0.5), (0.8, 0.2), (0.2, 0.5), (0.5, 0.4)}
C̃4

3 = {(0.8, 0.2), (0.6, 0.2), (0.7, 0.1), (0.2, 0.7), (0.2, 0.7)}, C̃4
4 = {(0.3, 0.5), (0.5, 0.5), (0.3, 0.7), (0.2, 0.5), (0.4, 0.4)}

C̃4
5 = {(0.8, 0.2), (0.6, 0.2), (0.3, 0.7), (0.2, 0.7), (0.2, 0.7)}, C̃4

6 = {(0.3, 0.5), (0.5, 0.5), (0.7, 0.2), (0.2, 0.7), (0.2, 0.7)}
C̃4

7 = {(0.2, 0.6), (0.3, 0.6), (0.6, 0.3), (0.1, 0.6), (0.1, 0.6)}, C̃4
8 = {(0.3, 0.5), (0.5, 0.5), (0.3, 0.7), (0.2, 0.7), (0.2, 0.7)}

C̃4
9 = {(0.2, 0.6), (0.3, 0.6), (0.3, 0.7), (0.1, 0.6), (0.1, 0.6)}, C̃4

10 = {(0.2, 0.6), (0.3, 0.6), (0.6, 0.3), (0.1, 0.7), (0.1, 0.7)}
C̃4

11 = {(0.2, 0.6), (0.3, 0.6), (0.3, 0.7), (0.1, 0.7), (0.1, 0.7)}, C̃4
∅ = {(1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0)}

Here, the IF concept’s lattice design of the given four objects with spatio-temporal
attributes with the Q4 quarter of time granule is given in Figure 4.

Figure 4. IF concept’s lattice diagram of four objects with spatial and Q4 quarter of time gran-
ule attributes.

Now, according to Equation (1), the IG of each lattice designed with the four events
showing the objects along with each quarter of the time granulation is given below:

Lattice1(designed with Q1 quarter of time granulation) IG : 0.53
Lattice2(designed with Q2 quarter of time granulation) IG : 0.58
Lattice3(designed with Q3 quarter of time granulation) IG : 0.60
Lattice4(designed with Q4 quarter of time granulation) IG : 0.52
Here, Lattice3, designed with the Q3 quarter of time granulation, gives more IG

than the other three lattices designed with the other three quarters of time granulation,
respectively. A higher IG leads to more interesting results with a less focused view of the
data. Now, the granulation measures COV and SP of Lattice3 IF concepts can be measured
through Equation (2) and Equation (3), respectively. According to Equations (2)–(4), the
COV, SP, and Q value of each IF concept of Lattice3 is given in Table 4.
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Table 4. Granulation measures of each IF concept of Lattice3.

COV(C) =[(
D
G ×

1
N ∑N

i=1 C
(

xµj

))
+

πj
2

] SP(C) =
[

1− len(d)
range

]
×[

α− 1
n−1 ∑X 6=X∗ G(x)

] Q(C) = COV(C)× (SP(C))ζ

C1 0.365 0.95 0.34675
C2 0.38 0.89 0.3382
C3 0.4 0.96 0.384
C4 0.5 0.92 0.46
C5 0.5 0.93 0.465
C6 0.41 0.93 0.3813
C7 0.44 0.92 0.4048
C8 0.55 0.92 0.506
C9 0.45 0.92 0.414
C10 0.59 0.92 0.5428
C11 0.585 0.94 0.5499
C12 0.57 0.91 0.5187
C13 0 0 0

Now, if the Q3 quarter of time granulation is decomposed into more parts, then this
decomposition of the Q3 quarter may provide more interesting results. For this purpose,
let Q3,1, Q3,2, and Q3,3 contain the July, August, and September IF data, respectively. This
is the second decomposition of the IF concept lattice designed through the Q3 quarter of
time granulation. Thus, the four events’ IF data with spatio-temporal attributes of the Q3
quarter’s second decomposition are given in Table 5.

Table 5. Events with Four Spatial and Three (decomposed) Q3,1, Q3,2, and Q3,3 Temporal At-
tributes Data.

Place1 Place2 Place3 Place4 Q3,1 Q3,2 Q3,3

E1 (0.9, 0.1) (0.6, 0.2) (0.3, 0.7) (0.8, 0.1) (0.9, 0.0) (0.0, 0.9) (0, 0)

E2 (0.3, 0.5) (0.5, 0.5) (0.8, 0.2) (0.2, 0.5) (1, 0) (0, 1) (0, 0)

E3 (0.8, 0.2) (0.6, 0.2) (0.7, 0.1) (0.2, 0.7) (0.8, 0.1) (0.1, 0.9) (0, 0)

E4 (0.2, 0.6) (0.3, 0.6) (0.6, 0.3) (0.1, 0.6) (0.9, 0.1) (0.1, 0.8) (0, 0)

The IG of each lattice, Lattice3,1, Lattice3,2, and Lattice3,3, with second decomposition
of Q3,1, Q3,2, and Q3,3 quarters of time granulation, respectively, is given below:

Lattice3,1 (designed with Q3,1 quarter of time granulation) IG : 0.63
Lattice3,2 (designed with Q3,2 quarter of time granulation) IG : 0.46
Lattice3,3 (designed with Q3,3 quarter of time granulation) IG : 0.44
It shows that Lattice3,1, made with the Q3,1 quarter of time granulation, gives more

IG than the other lattices of timed granulations. Moreover, the granulation measures of
the each concept lattice (as made with Lattice3), i.e., made with the Q3,1 quarter of time
granulation, are given as in Table 6.

Likewise, it can be observed that the granule Lattice2, designed with the Q2 quarter of
time granulation with an IG of 0.58, is the second highest IG. So, the granulation measures
COV, SP, and the Q value of the lattice, i.e., made with the Q2 quarter of time granulation,
are given as in Table 7.

Note, the value of “ζ = 1” is used because of the primary decomposition of the
granules. Here, primary decomposition means partitioning the data into months, be-
cause the first decided decomposition is set to one month. Moreover, partitioning one
month into two timeslots would be the secondary decomposition; in that case, the value
of “ζ” is 0.5. The applicability of the proposed approach is the knowledge discovery of
periodical events’ occurrences (co-occurrences), nonoccurrences, and uncertainty of occur-
rences/nonoccurrences in spatial and temporal aspects through IF datasets by applying
FCA and GrC.
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Table 6. Granulation measures of each IF concept of Lattice3,1.

COV(C) =[(
D
G ×

1
N ∑N

i=1 C
(

xµj

))
+

πj
2

] SP(C) =
[

1− len(d)
range

]
×[

α− 1
n−1 ∑X 6=X∗ G(x)

] Q(C) = COV(C)× (SP(C))ζ

C1 0.365 0.9 0.3285
C2 0.39 0.89375 0.3485625
C3 0.455 0.91875 0.4180313
C4 0.52 0.8875 0.4615
C5 0.47 0.8875 0.417125
C6 0.5 0.93125 0.465625
C7 0.56 0.89375 0.5005
C8 0.515 0.9 0.4635
C9 0.57 0.86875 0.4951875
C10 0.65 0.9125 0.593125
C11 0.64 0.8875 0.568
C12 0 0 0

Table 7. Granulation measures of each IF concept of Lattice2.

COV(C) =[(
D
G ×

1
N ∑N

i=1 C
(

xµj

))
+

πj
2

] SP(C) =
[

1− len(d)
range

]
×[

α− 1
n−1 ∑X 6=X∗ G(x)

] Q(C) = COV(C)× (SP(C))ζ

C1 0.175 0.9 0.1575
C2 0.13 0.89375 0.116188
C3 0.12 0.93125 0.11175
C4 0.21 0.9125 0.191625
C5 0.2 0.9 0.18
C6 0.18 0.91875 0.165375
C7 0.19 0.94375 0.179313
C8 0.21 0.95625 0.200813
C9 0.24 0.91875 0.2205
C10 0.195 0.93125 0.181594
C11 0.2 0.975 0.195
C12 0 0 0

7. Results and Discussion

The experiments were performed on a 64-bit system (Intel Core i3-4010U, 1.70 GHz,
4 GB RAM). Python (version 3.7) was used to construct the IF concepts’ lattice structures in
the experimental evaluation section. In the experimental evaluation of this research article,
IF data are taken to process the proposed methodology. Additionally, this IF data contain
four events, happening at four places in a year. For the first decomposition, one-year
timeslot data are partitioned into four quarters of the time granulation of events happening
at the given four places, where events show the objects and places, with time granulation
data indicating the attributes. The purpose of this methodology is to analyze the spatio-
temporal perspectives of the IF granule. More specifically, the idea is to find out whether
the granulation of IF data provides more interesting results. In the experimental evaluation,
the IG of the four lattices designed with the four events (objects) is analyzed first, which
happens at four places in four different quarters of the year, showing the spatio-temporal
attributes given as

Lattice1(designed with Q1 quarter of time granulation) IG : 0.53
Lattice2(designed with Q2 quarter of time granulation) IG : 0.58
Lattice3(designed with Q3 quarter of time granulation) IG : 0.60
Lattice4(designed with Q4 quarter of time granulation) IG : 0.52
Hence, the IG of Lattice3 made with the Q3 quarter of time granulation is higher than

the IG of all three lattices, so Lattice3 is chosen for further granulation measures. The COV,
SP, and Q value of each of Lattice3’s IF concept are calculated and given in Table 4. For the
second decomposition, the Q3 quarter is partitioned into three more timeslots, Q3,1, Q3,2,
and Q3,3, and the IG of lattices is made with the second partitioned timeslots, given as
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Lattice3,1 (designed with Q3,1 quarter of time granulation) IG : 0.63
Lattice3,2 (designed with Q3,2 quarter of time granulation) IG : 0.46
Lattice3,3 (designed with Q3,3 quarter of time granulation) IG : 0.44
It can be observed that the IG of the lattice with the Q3,1 quarter of time granulation

is greater than all the other IGs of the second decomposition lattices; therefore, if the
granulation measures of Lattice3,1 with the Q3,1 quarter of time granulation are checked in
Table 6, it can be seen that most of the IF concepts of the second decomposed lattice have
more COV and Q values than those of Lattice3 with the Q3 quarter of time granulation.
Hence, the granularity of data in IF sets gives more interesting results.

8. Comparison with Previous SOTA (State of the Art) Approaches
8.1. Comparison with Previous Spatial and Temporal Approaches Using FCA and GrC

This approach and its results are compared with other SOTA methodologies based
on the research methodology, the GrC perspective of spatial and temporal aspects and the
data viewpoint with the FCA algorithm. In [1], the authors present and evaluate a method
which uses an existing approach to discover periodic events in the data to combine time-
based granulation and three-way decisions to support decision makers in understanding
and reasoning on the learned granular structures conceptualizing spatial–temporal events.
In [7], the methodology interprets, represents, and implements sequential three-way GrC
with a framework of temporal–spatial multigranularity learning, which is described with
the temporality of data and the spatiality of parameters. The method in [31], based on the
GrC and FCA technique, proposes an approach which focuses on the temporal aspect of
data to extracte knowledge concerning the periodic occurrences of events. In the context
of three-way GrC, the authors in [46] introduce three extensional ideas, temporal, spatial,
spatial–temporal-based trisecting–acting–outcome (TAO) frameworks for the construction
of a multilevel composite granular structure.

In the literature, knowledge discovery through spatial and temporal aspects of data
uses the classical FCA algorithm (using single-value attributes) and the GrC paradigm
for the occurrences and co-occurrences of events. However, there can be three aspects
of events: occurrences (and co-occurrences), nonoccurrences, and uncertainty of occur-
rences/nonoccurrences with respect to spatial and temporal aspects of data. In this pro-
posed approach, IF datasets were used for events, such that event occurrences (and co-
occurrences), nonoccurrences, and uncertainty of occurrences/nonoccurrences in spatial
and temporal views can be indicated through the µ, γ, and π values, respectively. GrC was
used to discover the periodicity in the data at various abstraction levels, while FCA was
used to discover the granulation levels and process the granulation measures to understand
IF concepts. References [1,31] use an FCA-based single-value attribute for the single aspect
of event occurrences (and co-occurrences) with respect to the spatial and temporal aspects,
while [7,46] use granular structures for the spatial and temporal aspects of data. The main
advantages of the proposed approach over the existing approaches are discovering the
periodicity of spatial–temporal events data given in IF sets through GrC and the FCA
algorithm and predicting event occurrences, (and co-occurrences), nonoccurrences, and un-
certainty of occurrences/nonoccurrences in spatial and temporal views of data through IF
sets. The comparison of the proposed approach with other SOTA approaches is presented
in Table 8.

8.2. Comparison with Finding IE/IG

IG is computed through IE (uncertainty) in data. In GrC, the approaches [31,35] calcu-
late IE and IG using single-value attributes for the FCA while considering the one aspect of
event occurrences (co-occurrences). However, the proposed approach based on the GrC
paradigm uses IF datasets for the attributes of FCA that improves the results of IG. Addition-
ally, unlike the existing approaches, the proposed approach provides three aspects of event
occurrences (co-occurrences), nonoccurrence, and uncertainty of occurrence/nonoccurrence
in the spatial and temporal views of data. The comparison of (improved results computed
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through) the proposed approach with other SOTA approaches [31,35] is presented in
Table 9.

Here, the IG results obtained with the approaches of [31,35] are unchanged due to the
different IF µ and γ values in all the attributes shared by the objects in each lattice.

Table 8. Comparison with other SOTA approaches.

Research Article Research Methodology GrC (Spatial or Temporal)
Perspective

Data Viewpoint
with FCA/IF Sets

[1]

A method to combine time-based granulation and
three-way decisions to understand and reason on

learned granular structures and discover
periodic events.

Spatial and temporal aspects
of data granularity

FCA-based single-
value attribute

[7]

The method implements sequential three-way GrC
by a spatial–temporal multigranularity learning

framework, described with the temporality of data
and spatiality of parameters.

Spatial and temporal aspects
of data granularity -

[31]
A method based on GrC and FCA to focus the

temporal aspect and extract the knowledge
concerning periodic occurrences of events in data.

Temporal aspect of data
granularity.

FCA-based single-
value attribute.

[46]

Temporal, spatial, and spatial–temporal-based
trisecting–acting–outcome (TAO) frameworks for
the construction of multilevel composite granular

structures are introduced.

Spatial, temporal, and
spatial–temporal aspects of

data granularity
-

Proposed Approach

This approach analyzes and predict event
occurrences, nonoccurrences, and uncertainty of
occurrences/nonoccurrences through spatial and
temporal aspects given in IF sets’ data using GrC

and FCA.

Temporal aspect of data
granularity in IF datasets

IF set values using
granular computing

and the
FCA algorithm

Table 9. Comparison with other research methodologies to find IG. Higher values are bolded.

Lattice No. Results Obtained with
Approaches Used [31,35]

Results Obtained with the
Proposed Approach

Lattice1 0.25 0.53
Lattice2 0.25 0.58
Lattice3 0.25 0.60
Lattice4 0.25 0.52

Lattice3,1 0.25 0.63
Lattice3,2 0.25 0.46
Lattice3,3 0.25 0.44

8.3. Comparison with Finding COV, SP, and Q Value

COV, SP, and Q value are important granulation measures to analyze the granule.
In [31], granules are represented in the form of formal concepts and GrC and evaluated
through these granulation measures; moreover, in [44,45], these granulation measures
are proposed for the granules represented in fuzzy and IF sets. In existing approaches,
granulation measures are used only in the perspectives of GrC with the FCA algorithm [31],
or on fuzzy and IF sets [44,45]. However, the granulation measures in the proposed
approach are used in the perspective of GrC, FCA, and IF sets. In the proposed approach,
IF concepts are made and represented as granules, where the granulation measures are
used to evaluate those granules. The comparison given in Tables 10 and 11 shows that the
granulation measures used in the proposed approach give improved results.
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Table 10. Comparison with other Research Methodologies to find the granulation measures (COV, SP,
and Q value) of Lattice3. Higher values are bolded.

COV, SP and Q
Value Obtained with

Approaches Used in [44,45]

COV, SP and
Q Value Obtained

with Proposed Approach

Lattice3
IF Concepts

COV SP Q Value COV SP Q Value

C1 0.66 0.175 0.1155 0.365 0.95 0.34675
C2 0.52 0.425 0.221 0.38 0.89 0.3382
C3 0.6 0.15 0.09 0.4 0.96 0.384
C4 0.4 0.325 0.13 0.5 0.92 0.46
C5 0.4 0.25 0.1 0.5 0.93 0.465
C6 0.52 0.275 0.143 0.41 0.93 0.3813
C7 0.48 0.325 0.156 0.44 0.92 0.4048
C8 0.4 0.325 0.13 0.55 0.92 0.506
C9 0.4 0.3 0.12 0.45 0.92 0.414
C10 0.32 0.325 0.104 0.59 0.92 0.5428
C11 0.38 0.25 0.095 0.585 0.94 0.5499
C12 0.32 0.35 0.112 0.57 0.91 0.5187
C13 1 0 0 0 0 0

Table 11. Comparison with other Research Methodologies to find the granulation measures (COV, SP,
and Q value) of Lattice3,1. Higher values are bolded.

COV, SP and Q
Value Obtained with

Approaches Used in [44,45]

COV, SP and
Q Value Obtained

with Proposed Approach

Lattice3,1
IF Concepts

COV SP Q Value COV SP Q Value

C1 0.66 0.4 0.264 0.365 0.9 0.328
C2 0.56 0.425 0.238 0.39 0.89375 0.348
C3 0.62 0.325 0.2015 0.455 0.91875 0.418
C4 0.44 0.45 0.198 0.52 0.8875 0.462
C5 0.54 0.45 0.243 0.47 0.8875 0.417
C6 0.5 0.275 0.1375 0.5 0.931 0.466
C7 0.42 0.425 0.179 0.56 0.894 0.5005
C8 0.42 0.4 0.168 0.515 0.9 0.464
C9 0.36 0.525 0.189 0.57 0.86875 0.495
C10 0.4 0.35 0.14 0.65 0.9125 0.593
C11 0.34 0.45 0.153 0.64 0.8875 0.568
C12 1 0 0 0 0 0

The proposed approach is compared with other SOTA approaches by applying gran-
ulation measures on the IF datasets given in Section 6 (experimental evaluation). These
IF datasets contain events as objects and spatial and temporal attributes, in which the
temporal attribute is decomposed into four quarters, Q1, Q2, Q3, and Q4 of the annual
periodicity of time granulation, and four granules are created in the first decomposition.
Afterwards, the IG of each granule is computed to determine the granule with more IG.
FCA is then used to construct lattices from each granule, and granulation measures are
performed on the decided granule (with more IG). As shown in Table 9, the IG obtained
with the proposed approach is greater than that obtained with other approaches [31,35].
In Table 9, the IG obtained with the other approaches is the same for all the lattices, because
none of the objects have identical IF values. Furthermore, in Tables 10 and 11, most of
the granulation measures (COV, SP, and Q value) of Lattice3 and Lattice3,1 obtained with
the proposed approach are greater than the existing approaches [44,45]. Hence, it can be
observed that the proposed approach provides improved results for IG, COV, and Q value
obtained from the IF datasets and processed through GrC and the FCA algorithm.

9. Conclusions and Future Work

This research suggests a novel approach to determine occurrences (and co-occurrences),
nonoccurrences, and uncertainty of occurrences/nonoccurrences of events based on GrC
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and IF datasets with spatio-temporal attributes. The FCA algorithm was used to analyze
the granulation level and granulation measures. Furthermore, different measures are
proposed to analyze granulation levels formed with the IF datasets. The originality of
this proposed methodology is to discover the periodical occurrences (and co-occurrences),
nonoccurrences, and uncertainty of occurrences/nonoccurrences in IF datasets with spatio-
temporal attributes using FCA and granulation measures. Here, the limited IF datasets
indicating the spatial and temporal aspects of data are considered for the experimentation
and work of the proposed methodology. This can be implemented on a large number
of IF datasets in the context of big data for the scalability of the proposed methodology.
In the real world, this approach can be used to discover the significance in periodicities
of data related to storm occurrences, digital forensics, and electronic and smart video
surveillance by constructing a timeline to analyze and predict information. Moreover,
the proposed approach does not provide an automatic or semiautomatic process to predict
an event’s occurrence in granular structures. The authors aim to address these additions in
future works.
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