Hierarchies of the Korteweg–de Vries Equation Related to Complex Expansion and Perturbation
Abstract
:1. Introduction
2. Construction of the Complexification Hierarchy of the Korteweg–de Vries Equation
2.1. Transformation Operators of a Special Kind for n = 1
2.2. Higher-Order Transformation Operators
3. Construction of the Hierarchy of Perturbed Korteweg–de Vries Equation
3.1. The perturbed Korteweg–de Vries Equation
3.2. Hierarchy of the Perturbed Korteweg–de Vries Equation
3.3. Perturbation of the Second Korteweg–de Vries Hierarchy
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gardner, C.S.; Greene, J.M.; Kruskal, M.D.; Miura, R.M. Method for solving the Korteweg-de Vries equation. Phys. Rev. Lett. 1967, 19, 1095–1097. [Google Scholar] [CrossRef]
- Liu, X.-K.; Wen, X.-Y. A discrete KdV equation hierarchy: Continuous limit, diverse exact solutions and their asymptotic state analysis. Commun. Theor. Phys. 2022, 74, 065001. [Google Scholar] [CrossRef]
- Li, F.; Yao, Y. Multisoliton and rational solutions for the extended fifth-order KdV equation in fluids with self-consistent sources. Theor. Math. Phys. 2022, 210, 184–197. [Google Scholar] [CrossRef]
- Zemlyanukhin, A.I.; Bochkarev, A.V. The perturbation method and exact solutions of nonlinear dynamics equations for media with microstructure. Comput. Contin. Mech. 2016, 9, 182–191. [Google Scholar] [CrossRef]
- Kudryashov, N.A. Remarks on rational solutions for the Korteweg-de Vries hierarchy. arXiv 2007, arXiv:nlin/0701034. [Google Scholar]
- Clarkson, P.A.; Joshi, N.; Mazzocco, M. The Lax pair for the mKdV hierarchy. Sémin. Congrès 2006, 14, 53–64. [Google Scholar]
- Ye, S.; Zeng, Y. Integration of the modified Korteweg-de Vries hierarchy with an integral type of source. J. Phys. A Math. Gen. 2002, 35, L283–L291. [Google Scholar] [CrossRef]
- Joshi, N. The second Painlevé hierarchy and the stationary KdV hierarchy. Publ. Res. Inst. Math. Sci. 2004, 40, 1039–1061. [Google Scholar] [CrossRef]
- Zabrodin, A.V. Kadomtsev–Petviashvili hierarchies of types B and C. Theor. Math. Phys. 2021, 208, 865–885. [Google Scholar] [CrossRef]
- Zhang, Y.; Rui, W. A few super-integrable hierarchies and some re-ductions, super-Hamiltonian structures. Rep. Math. Phys. 2015, 75, 231–255. [Google Scholar] [CrossRef]
- Liu, J.-G.; Yang, X.-J.; Feng, Y.-Y.; Cui, P.; Geng, L.-L. On integrability of the higher dimensional time fractional KdV-type equation. J. Geom. Phys. 2021, 160, 104000. [Google Scholar] [CrossRef]
- Kundu, A. Integrable twofold hierarchy of perturbed equations and application to optical soliton dynamics. Theor. Math. Phys. 2011, 167, 800–810. [Google Scholar] [CrossRef]
- Redkina, T.V.; Zakinyan, R.G.; Zakinyan, A.R.; Surneva, O.B.; Yanovskaya, O.S. Bäcklund Transformations for Nonlinear Differential Equations and Systems. Axioms 2019, 8, 45. [Google Scholar] [CrossRef]
- Bogoyavlenskiĭ, O.I. Breaking solitons II. Math. USSR Izv. 1990, 35, 245–248. [Google Scholar] [CrossRef]
- Bogoyavlenskiĭ, O.I. Breaking solitons III. Math. USSR Izv. 1991, 36, 129–137. [Google Scholar] [CrossRef]
- Redkina, T.V. Some properties of the complexification of the Korteweg-de Vries equation. Izv. Acad. Sci. USSR Ser. Math. 1991, 55, 1300–1311. [Google Scholar]
- Lax, P.D. Integrals of nonlinear equation of evolution and solitary waves. Commun. Pure Appl. Math. 1968, 21, 467–490. [Google Scholar] [CrossRef]
- Kuperschmidt, B.A. Integrable and Super-Integrable Systems; World Scientific: Singapore, 1990. [Google Scholar]
- Kuperschmidt, B.A. A super Korteweg-de Vries equation: An integrable system. Phys. Lett. A 1984, 102, 213–215. [Google Scholar] [CrossRef]
- Manin, Y.I.; Radul, A.O. A supersymmetric extension of the Kadomtsev-Petviashvili hierarchy. Commun. Math. Phys. 1985, 98, 65–77. [Google Scholar] [CrossRef]
- Magnot, J.P.; Rubtsov, V.N. On the Kadomtsev-Petviashvili hierarchy in an extended class of formal pseudo-differential operators. Theor. Math. Phys. 2021, 207, 458–488. [Google Scholar] [CrossRef]
- Geng, X.; Wu, L. A new super-extension of the KdV hierarchy. Appl. Math. Lett. 2010, 23, 716–721. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Redkina, T.V.; Zakinyan, A.R.; Zakinyan, R.G.; Surneva, O.B. Hierarchies of the Korteweg–de Vries Equation Related to Complex Expansion and Perturbation. Axioms 2023, 12, 371. https://doi.org/10.3390/axioms12040371
Redkina TV, Zakinyan AR, Zakinyan RG, Surneva OB. Hierarchies of the Korteweg–de Vries Equation Related to Complex Expansion and Perturbation. Axioms. 2023; 12(4):371. https://doi.org/10.3390/axioms12040371
Chicago/Turabian StyleRedkina, Tatyana V., Arthur R. Zakinyan, Robert G. Zakinyan, and Olesya B. Surneva. 2023. "Hierarchies of the Korteweg–de Vries Equation Related to Complex Expansion and Perturbation" Axioms 12, no. 4: 371. https://doi.org/10.3390/axioms12040371
APA StyleRedkina, T. V., Zakinyan, A. R., Zakinyan, R. G., & Surneva, O. B. (2023). Hierarchies of the Korteweg–de Vries Equation Related to Complex Expansion and Perturbation. Axioms, 12(4), 371. https://doi.org/10.3390/axioms12040371