Coefficient Results concerning a New Class of Functions Associated with Gegenbauer Polynomials and Convolution in Terms of Subordination
Abstract
:1. Introduction and Preliminaries
2. Main Results
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Koebe, P. Über die Uniformisierung beliebiger analytischer Kurven. Nachr. Kgl. Ges. Wiss. Gött. Math-Phys. Kl. 1907, 1907, 191–210. [Google Scholar]
- Bieberbach, L. Über die koeffizienten derjenigen Potenzreihen, welche eine schlichte Abbildung des Einheitskreises vermitteln. Sitzungsber. Preuss. Akad. Wiss. Phys.-Math. Kl. 1916, 138, 940–955. [Google Scholar]
- De Branges, L. A proof of the Bieberbach conjecture. Acta Math. 1985, 154, 137–152. [Google Scholar] [CrossRef]
- Alexander, J.W. Functions which map the interior of the unit circle upon simple region. Ann. Math. 1915, 17, 12–22. [Google Scholar] [CrossRef]
- Gluchoff, A.; Hartmann, F. On a “Much Underestimated” Paper of Alexander. Arch. Hist. Exact Sci. 2000, 55, 1–41. [Google Scholar] [CrossRef] [Green Version]
- Gonor, A.L.; Poruchikov, V.B. The penetration of star-shaped bodies into a compressible fluid. J. Appl. Math. Mech. 1989, 53, 308–314. [Google Scholar] [CrossRef]
- Frenkel, D. Computer simulation of hard-core models for liquid crystals. Mol. Phys. 1987, 60, 1–20. [Google Scholar] [CrossRef]
- Wojciechowski, K.W. Hard star-shaped bodies and Monte Carlo simulations. J. Chem. Phys. 1991, 94, 4099–4100. [Google Scholar] [CrossRef]
- Mura, T. The determination of the elastic field of a polygonal star shaped inclusion. Mech. Res. Commun. 1997, 24, 473–482. [Google Scholar] [CrossRef]
- Babalola, K.O. On λ-pseudo-starlike functions. J. Class. Anal. 2013, 3, 137–147. [Google Scholar] [CrossRef]
- Aghalary, R.; Arjomandinia, P. On a first order strong differential subordination and application to univalent functions. Commun. Korean Math. Soc. 2022, 37, 445–454. [Google Scholar]
- Antonino, J.A. Strong differential subordination and applications to univalency conditions. J. Korean Math. Soc. 2006, 43, 311–322. [Google Scholar] [CrossRef] [Green Version]
- Antonino, J.A.; Romaguera, S. Strong differential subordination to Briot-Bouquet differential equations. J. Diff. Equ. 1994, 114, 101–105. [Google Scholar] [CrossRef] [Green Version]
- Olatunji, S.O.; Dutta, H. Subclasses of multivalent functions of complex order associated with sigmoid function and Bernoulli lemniscate. TWMS J. App. Eng. Math. 2020, 10, 360–369. [Google Scholar]
- Olatunji, S.O.; Gbolagade, A.M. On certain subclass of analytic functions associated with Gegenbauer polynomials. J. Fract. Calc. Appl. 2018, 9, 127–132. [Google Scholar]
- Oladipo, A.T. Bounds for Probabilities of the Generalized Distribution Defined by Generalized Polylogarithm. J. Math. Punjab Univ. 2019, 51, 19–26. [Google Scholar]
- Ahmad, I.; Shah, S.G.A.; Hussain, S.; Darus, M.; Ahmad, B. Fekete-Szegö Functional for Bi-univalent Functions Related with Gegenbauer Polynomials. J. Math. 2022, 2022, 2705203. [Google Scholar] [CrossRef]
- Amourah, A.; Al Amoush, A.G.; Al-Kaseasbeh, M. Gegenbauer polynomials and bi-univalent functions. Palest. J. Math. 2021, 10, 625–632. [Google Scholar]
- Szynal, J. An extension of typically real functions. Ann. Univ. Mariae Curie-Sklodowska Sect A. 1994, 48, 193–201. [Google Scholar]
- Kiepiela, K.; Naraniecka, I.; Szynal, J. The Gegenbauer polynomials and typically real functions. J. Comput. Appl. Math. 2003, 153, 273–282. [Google Scholar] [CrossRef] [Green Version]
- Bavinck, H.; Hooghiemstra, G.; De Waard, E. An application of Gegenbauer polynomials in queueing theory. Int. J. Comput. Appl. Math. 1993, 49, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Porwal, S. Generalized distribution and its geometric properties associated with univalent functions. J. Complex. Anal. 2018, 2018, 8654506. [Google Scholar] [CrossRef]
- Swamy, S.R.; Yalçın, S. Coefficient bounds for regular and bi-univalent functions linked with Gegenbauer polynomials. Probl. Anal. Issues Anal. 2022, 11, 133–144. [Google Scholar] [CrossRef]
- Amourah, A.; Frasin, B.A.; Abdeljawad, T. Fekete-Szegö inequality for analytic and biunivalent functions subordinate to Gegenbauer polynomials. J. Funct. Spaces 2021, 2021, 5574673. [Google Scholar] [CrossRef]
- Amourah, A.; Alomari, M.; Yousef, F.; Alsoboh, A. Consolidation of a Certain Discrete Probability Distribution with a Subclass of Bi-Univalent Functions Involving Gegenbauer Polynomials. Math. Probl. Eng. 2022, 2022, 6354994. [Google Scholar] [CrossRef]
- Çağlar, M.; Cotîrlă, L.-I.; Buyankara, M. Fekete–Szegö Inequalities for a New Subclass of Bi-Univalent Functions Associated with Gegenbauer Polynomials. Symmetry 2022, 14, 1572. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Kamalı, M.; Urdaletova, A. A study of the Fekete-Szegö functional and coefficient estimates for subclasses of analytic functions satisfying a certain subordination condition and associated with the Gegenbauer polynomials. AIMS Math. 2021, 7, 2568–2584. [Google Scholar] [CrossRef]
- Oladipo, A.T. Analytic Univalent Functions defined by Generalized discrete probability distribution. Eartline J. Math. Sci. 2021, 5, 169–178. [Google Scholar] [CrossRef]
- Oladipo, A.T. Generalized distribution associated with univalent functions in conical domain. An. Univ. Oradea Fasc. Mat. 2019, 26, 161–167. [Google Scholar]
- Barton, D.E.; Abramovitz, M.; Stegun, I.A. Handbook of mathematical functions with formulas, graphs and mathematical tables. J. R. Stat. Soc. Ser. A 1965, 128, 593. [Google Scholar] [CrossRef] [Green Version]
- Alzer, H. Error function inequalities. Adv. Comput. Math. 2010, 33, 349–379. [Google Scholar] [CrossRef]
- Carlitz, L. The inverse of the error function. Pac. J. Math. 1963, 13, 459–470. [Google Scholar] [CrossRef] [Green Version]
- Coman, D. The radius of srarlikeness for the error function. Stud. Univ. Babes-Bolyai Math. 1991, 36, 13–16. [Google Scholar]
- Elbert, A.; Laforgia, A. The zeros of the complementary error function. Numer. Algorithms 2008, 49, 153–157. [Google Scholar] [CrossRef]
- Ramachandran, C.; Vanitha, L.M.; Kanias, S. Certain results on q-starlike and q-convex error functions. Math. Slovaca 2018, 68, 361–368. [Google Scholar] [CrossRef] [Green Version]
- Ramachandran, C.; Dhanalakshmi, K.; Vanitha, L. Hankel determinant for a subclass of analytic functions associated with error functions bounded by conical regions. Int. J. Math. Anal. 2017, 11, 571–581. [Google Scholar] [CrossRef]
- Fadipe-Joseph, O.A.; Moses, B.O.; Oluwayemi, M.O. Certain new classes of analytic functions defined by using sigmoid function. Adv. Math. Sci. J. 2016, 5, 83–89. [Google Scholar]
- Ezeafulukwe, U.A.; Darus, M.; Fadipe-Joseph, O.A. The q-analogue of sigmoid function in the space of univalent λ-pseudo starlike function. Int. J. Math. Comput. Sci. 2020, 15, 621–626. [Google Scholar]
- Fadipe-Joseph, O.A.; Oladipo, A.T.; Ezeafulukwe, U.A. Modified sigmoid function in univalent function theory. Int. J. Math. Sci. Eng. App. 2013, 7, 313–317. [Google Scholar]
- Hamzat, J.O.; Oladipo, A.T.; Oros, G.I. Bi-Univalent Problems Involving Certain New Subclasses of Generalized Multiplier Transform on Analytic Functions Associated with Modified Sigmoid Function. Symmetry 2022, 14, 1479. [Google Scholar] [CrossRef]
- Murugusundaramoorthy, G.; Janani, T. Sigmoid function in the space of univalent λ-pseudo starlike functions. Int. J. Pure Appl. Math. 2015, 101, 33–41. [Google Scholar] [CrossRef] [Green Version]
- Murugusundaramoorthy, G.; Olatunji, S.O.; Fadipe-Joseph, O.A. Fekete-Szegö problems for analytic functions in the space of logistic sigmoid functions based on quasi-subordination. Int. J. Nonlinear Anal. Appl. 2018, 9, 55–68. [Google Scholar] [CrossRef]
- Olatunji, S.O. Sigmoid function in the space of space of univalent λ-pseudo starlike function with Sakaguchi functions. J. Progress. Res. Math. 2016, 7, 1164–1172. [Google Scholar]
- Olatunji, S.O. Fekete-Szegö inequalities on certain subclasses of analytic functions defined by λ-pseudo-q-difference operator associated with s-sigmoid function. Bol. Soc. Mat. Mex. 2022, 28, 55. [Google Scholar] [CrossRef]
- Cho, N.E.; Kumar, S.; Kumar, V.; Ravichandran, V.; Srivastava, H.M. Starlike functions related to Bell numbers. Symmetry 2019, 11, 219. [Google Scholar] [CrossRef] [Green Version]
- Goyal, R.; Agarwal, P.; Oros, G.I.; Jain, S. Extended Beta and Gamma Matrix Functions via 2-Parameter Mittag-Leffler Matrix Function. Mathematics 2022, 10, 892. [Google Scholar] [CrossRef]
- Oluwayemi, M.O.; Olatunji, S.O.; Ogunlade, T.O. On certain properties of univalent functions associated with Beta function. Abstr. Appl. Anal. 2022, 2022, 8150057. [Google Scholar] [CrossRef]
- Oluwayemi, M.O.; Olatunji, S.O.; Ogunlade, T.O. On certain subclass of univalent functions involving beta function. Int. J. Math. Comput. Sci. 2022, 17, 1715–1719. [Google Scholar]
- Olatunji, S.O.; Altinkaya, S. Generalized distribution associated with quasi-subordination in terms of error functions and Bell numbers. J. Jordan J. Math. Stat. (JJJMS) 2021, 14, 97–109. [Google Scholar]
- Altinkaya, S.; Olatunji, S.O. Generalized distribution for analytic function classes associated with error functions and Bell numbers. Bol. Soc. Mat. Mex. 2020, 26, 377–384. [Google Scholar] [CrossRef]
- Kumar, V.; Cho, N.E.; Ravichandran, V.; Srivastava, H.M. Sharp coefficient bounds for starlike functions associated with Bell numbers. Math. Slovaca 2019, 69, 1053–1064. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Olatunji, S.O.; Oluwayemi, M.O.; Oros, G.I. Coefficient Results concerning a New Class of Functions Associated with Gegenbauer Polynomials and Convolution in Terms of Subordination. Axioms 2023, 12, 360. https://doi.org/10.3390/axioms12040360
Olatunji SO, Oluwayemi MO, Oros GI. Coefficient Results concerning a New Class of Functions Associated with Gegenbauer Polynomials and Convolution in Terms of Subordination. Axioms. 2023; 12(4):360. https://doi.org/10.3390/axioms12040360
Chicago/Turabian StyleOlatunji, Sunday Olufemi, Matthew Olanrewaju Oluwayemi, and Georgia Irina Oros. 2023. "Coefficient Results concerning a New Class of Functions Associated with Gegenbauer Polynomials and Convolution in Terms of Subordination" Axioms 12, no. 4: 360. https://doi.org/10.3390/axioms12040360
APA StyleOlatunji, S. O., Oluwayemi, M. O., & Oros, G. I. (2023). Coefficient Results concerning a New Class of Functions Associated with Gegenbauer Polynomials and Convolution in Terms of Subordination. Axioms, 12(4), 360. https://doi.org/10.3390/axioms12040360