An Energy-Based Big Data Framework to Estimate the Young’s Moduli of the Soils Drilled during the Execution of Continuous Flight Auger Piles
Abstract
:1. Introduction
2. CFAPs and Their Execution
Obtaining Strength and Deformability Parameters of Soils from Drilling Performance Indicators
3. Big Data Analytics: Challenges and Perspectives for Geotechnical Engineering Applications
3.1. Volume
3.2. Velocity
3.3. Variety
4. Proposition of a Big Data Workflow for CFAPs Real-Time Assessment
4.1. Data Mining
4.2. Data Management
4.3. Data Modelling
4.4. Result Analysis and Visualization
Bootstrap
5. Young’s Modulus Behavior and Estimation
Novel Simplified Model for Young’s Moduli Prediction
6. Results and Discussions
Young’s Moduli Estimation
- Estimating :
- Estimating m:
- Estimating :
- Estimating c and :
- Estimating :
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ozelim, L.C.S.M.; de Campos, D.J.F.; de Carvalho, J.C.; Cavalcante, A.L.B. Indirect In-situ Tests During the Execution of Deep Foundations: Relating the Excavation Energies to the Young’s Moduli of the Surrounding Soils. In Sustainability Issues for the Deep Foundations. GeoMEast 2018. Sustainable Civil Infrastructures; El-Naggar, H., Abdel-Rahman, K., Fellenius, B., Shehata, H., Eds.; Springer: Berlin/Heidelberg, Germany, 2019; pp. 191–205. [Google Scholar]
- Assunção, M.; Calheiros, R.N.; Bianchi, S.; Netto, M.; Buyya, R. Big Data computing and clouds: Trends and future directions. J. Parallel Distrib. Comput. 2014, 79, 3–15. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.; Chen, J.; Chen, G.; Wu, Z.; Zhong, Y.; Chen, B.; Ke, W.; Huang, J. Development of Data Integration and Sharing for Geotechnical Engineering Information Modeling Based on IFC. Adv. Civ. Eng. 2021, 2021, 8884864. [Google Scholar] [CrossRef]
- Lee, F.; Tan, T.; Karunaratne, G.P.; Lee, S. Geotechnical Data Management System. J. Comput. Civ. Eng. 1990, 4, 239–254. [Google Scholar] [CrossRef]
- Phoon, K.K.; Cao, Z.J.; Ji, J.; Leung, Y.F.; Najjar, S.; Shuku, T.; Tang, C.; Yin, Z.Y.; Ikumasa, Y.; Ching, J. Geotechnical uncertainty, modeling, and decision making. Soils Found. 2022, 62, 101189. [Google Scholar] [CrossRef]
- Ferrari de Campos, D.J. Big Data and Artificial Intelligence Applied to Foundations. Ph.D. Thesis, Department of Civil and Environmental Engineering, University of Brasília, Brasilia, Brazil, 2022. (In Portuguese). [Google Scholar]
- Stone, R.C.; Farhangi, V.; Fatahi, B.; Karakouzian, M. A novel short pile foundation system bonded to highly cemented layers for settlement control. Can. Geotech. J. 2023. [Google Scholar] [CrossRef]
- Hachich, W.; Falconi, F.F.; Saes, J.L.; Frota, R.G.; Carvalho, C.S.; Niyama, S. Fundações: Teoria e Prática, 2nd ed.; PINI Ltda.: São Paulo, Brazil, 1998. [Google Scholar]
- Silva, C.M.; Camapum de Carvalho, J.; Cavalcante, A.L.B. Energy and Reliability Applied to Continuous Flight Auger Pilings—The SCCAP Methodology. In Proceedings of the 18th International Conference on Soil Mechanics and Geotechnical Engineering, Paris, France, 2–7 September 2013; pp. 2807–2810. [Google Scholar]
- Ozelim, L.C.d.S.M.; Ferrari de Campos, D.J.; Cavalcante, A.L.B.; Camapum de Carvalho, J.; Silva, C.M. Estimating Shear Strength Properties of the Surrounding Soils Based on the Execution Energies of Piles. Geotechnics 2022, 2, 457–466. [Google Scholar] [CrossRef]
- Geodigitus. Manual de Instruções SACI2 e SoftSACI2—Operação SACI; Franmar Eletrônica do Brasil Ltda: Belo Horizonte, Brazil, 2010. [Google Scholar]
- Li, Z.; Itakura, K. An analytical drilling model of drag bits for evaluation of rock strength. Soils Found. 2012, 52, 216–227. [Google Scholar] [CrossRef] [Green Version]
- Behboud, M.M.; Ramezanzadeh, A.; Tokhmechi, B. Studying empirical correlation between drilling specific energy and geo-mechanical parameters in an oil field in SW Iran. J. Min. Environ. 2017, 8, 393–401. [Google Scholar] [CrossRef]
- Li, H.; Li, J.; Farhangi, V. Determination of piers shear capacity using numerical analysis and machine learning for generalization to masonry large scale walls. Structures 2023, 49, 443–466. [Google Scholar] [CrossRef]
- Warren, T.M. Drilling Model for Soft-Formation Bits. Soc. Pet. Eng. 1981, 33, 963–970. [Google Scholar] [CrossRef]
- Warren, T.M. Penetration Rate Performance of Roller Cone Bits. Soc. Pet. Eng. 1987, 2, 9–18. [Google Scholar] [CrossRef]
- Kahraman, S.; Bilgin, N.; Feridunoglu, C. Dominant rock properties affecting the penetration rate of percussive drills. Int. J. Rock Mech. Min. Sci. 2003, 40, 711–723. [Google Scholar] [CrossRef]
- Ozelim, L.C.S.M.; Ferrari de Campos, D.J.; Camapum de Carvalho, J.; Cavalcante, A.L.B. On the Relation between the Excavation Energies of Continuous Flight Auger Piles and the Unconfined Compressive Strength of the Surrounding Soils. In Geotechnical Engineering in the XXI Century: Lessons Learned and Future Challenges; López-Acosta, N.P., Martínez-Hernández, E., Espinosa-Santiago, A.L., Mendoza-Promotor, J.A., López, A.O., Eds.; IOS Press: Amsterdan, The Netherlands, 2019; pp. 1117–1124. [Google Scholar]
- Tsai, C.W.; Lai, C.F.; Chao, H.C.; Vasilakos, A.V. Big data analytics: A survey. J. Big Data 2015, 2, 21. [Google Scholar] [CrossRef] [Green Version]
- Fisher, D.; DeLine, R.; Czerwinski, M.; Drucker, S. Interactions with Big Data Analytics. Interactions 2012, 19, 50–59. [Google Scholar] [CrossRef]
- Laney, D. 3D Data Management: Controlling Data Volume, Velocity, and Variety; Technical Report; META Group: Stamford, CT, USA, 2001. [Google Scholar]
- Baraniuk, R.G. More Is Less: Signal Processing and the Data Deluge. Science 2011, 331, 717–719. [Google Scholar] [CrossRef]
- Famili, A.; Shen, W.M.; Weber, R.; Simoudis, E. Data preprocessing and intelligent data analysis. Intell. Data Anal. 1997, 1, 3–23. [Google Scholar] [CrossRef] [Green Version]
- Jun, S.W.; Fleming, K.E.; Adler, M.; Emer, J. ZIP-IO: Architecture for application-specific compression of Big Data. In Proceedings of the 2012 International Conference on Field-Programmable Technology, Seoul, Republic of Korea, 10–12 December 2012; pp. 343–351. [Google Scholar] [CrossRef]
- Ma, C.; Zhang, H.H.; Wang, X. Machine learning for Big Data analytics in plants. Trends Plant Sci. 2014, 19, 798–808. [Google Scholar] [CrossRef]
- Teale, R. The concept of specific energy in rock drilling. Int. J. Rock Mech. Min. Sci. 1965, 2, 57–71. [Google Scholar] [CrossRef]
- Perko, H.A. Energy Method for Predicting the Installation Torque of Helical Foundations and Anchors. In New Technological and Design Developments in Deep Foundations; American Society of Civil Engineers: Reston, VA, USA, 2001; pp. 342–352. [Google Scholar]
- Tsuha, C.d.H.C.; Aoki, N. Relationship between installation torque and uplift capacity of deep helical piles in sand. Can. Geotech. J. 2010, 47, 635–647. [Google Scholar] [CrossRef]
- Reddish, D.; Yasar, E. A new portable rock strength index test based on specific energy of drilling. Int. J. Rock Mech. Min. Sci. 1996, 33, 543–548. [Google Scholar] [CrossRef]
- Moronkeji, D.; Villegas, R.; Shouse, R.; Prasad, U. Rock strength prediction during coring operation. In Proceedings of the International Symposium of the Society of Core Analysts: SCA2017-048, Vienna, Austria, 28–31 August 2017; pp. 9p. [Google Scholar]
- Obrzud, R.; Truty, A. The Hardening Soil Model—A Practical Guidebook Z Soil; PC 100701 Report; Zace Services Ltd., Software Engineering: Préverenges, Switzerland, 2012. [Google Scholar]
- Kezdi, A. Handbook of Soil Mechanics; Elsevier: Amsterdam, The Netherlands, 1974. [Google Scholar]
- Prat, M.; Bisch, E.; Millard, A.; Mestat, P.; Cabot, G. La Modelisation des Ouvrages; Hermes: Paris, France, 1995. [Google Scholar]
- Efron, B.; Tibshirani, R. An Introduction to the Bootstrap; Champman & Hall: London, UK, 1993. [Google Scholar]
- Moore, D. The Practice of Business Statistics: Using Data for Decisions; W.H. Freeman and Company: New York, NY, USA, 2009. [Google Scholar]
- Ozelim, L.C.S.M.; Cavalcante, A.L.B. Representative Elementary Volume Determination for Permeability and Porosity Using Numerical Three-Dimensional Experiments in Microtomography Data. Int. J. Geomech. 2018, 18, 04017154. [Google Scholar] [CrossRef]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Schanz, T.; Vermeer, P.A.; Bonnier, P.G. The Hardening soil model: Formulation and verification. In Beyond 2000 in Computational Geotechnics—10 Years of PLAXIS; Balkema: Rotterdam, The Netherlands, 1999. [Google Scholar]
- Teixeira, A.H.; Godoy, N.S. Análise, projeto e execução de fundações rasas. In Fundações: Teoria e Prática; PINI: Sao Paulo, Brazil, 1996; Chapter 7; pp. 227–264. [Google Scholar]
- NAVFAC-DM7; Design Manual: Soil Mechanics, Foundations and Earth Structures. U.S. Department of the Navy: Washington, DC, USA, 1971.
- Hughes, H.M. Some Aspects of Rock Machining. Int. J. Rock Mech. Min. Sci. 1972, 9, 205–211. [Google Scholar] [CrossRef]
- Farmer, J.W. Engineering Properties of Rocks; E. & F. N. Spon: London, UK, 1968. [Google Scholar]
- Jaky, J. The coefficient of earth pressure at-rest. J. Soc. Hung. Archit. Eng. 1993, 30, 647–666. [Google Scholar]
- Corani, G.; Benavoli, A.; Demšar, J.; Mangili, F.; Zaffalon, M. Statistical comparison of classifiers through Bayesian hierarchical modelling. Mach. Learn. 2017, 106, 1817–1837. [Google Scholar] [CrossRef] [Green Version]
- Surarak, C.; Likitlersuang, S.; Wanatowski, D.; Balasubramaniam, A.; Oh, E.; Guan, H. Stiffness and strength parameters for hardening soil model of soft and stiff Bangkok clays. Soils Found. 2012, 52, 682–697. [Google Scholar] [CrossRef] [Green Version]
USCS | Description | Very Soft to Soft (MPa) | Medium (MPa) | Stiff to Very Stiff (MPa) | Hard (MPa) |
---|---|---|---|---|---|
ML | Silts with slight plasticity | 2.5–8 | 10–15 | 15–40 | 40–80 |
ML, CL | Silts with low plasticity | 1.5–6 | 6–10 | 10–30 | 30–60 |
CL | Clays with low-medium plasticity | 0.5–5 | 5–8 | 8–30 | 30–70 |
CH | Clays with high plasticity | 0.35–4 | 4–7 | 7–20 | 20–32 |
OL | Organic silts | – | 0.5–5 | – | - |
OH | Organic clays | – | 0.5–4 | – | - |
Soil Type | |
---|---|
Sand | 3 |
Silt | 5 |
Clay | 7 |
Soil Type | K (MPa) |
---|---|
Sand with gravel | 1.10 |
Sand | 0.90 |
Silty Sand | 0.70 |
Clayey Sand | 0.55 |
Sandy Silt | 0.45 |
Silt | 0.35 |
Sandy Clay | 0.30 |
Clayey Silt | 0.25 |
Silty Clay | 0.20 |
Layer | P9CF | PR6 | P9AF | P6AD | ||||
---|---|---|---|---|---|---|---|---|
(MJ/m) | E (MPa) | (MJ/m) | E (MPa) | (MJ/m) | E (MPa) | (MJ/m) | E (MPa) | |
0–1 m | 2.06 | 6.38 | 2.07 | 6.70 | 2.53 | 8.05 | 4.31 | 14.16 |
1–2 m | 4.45 | 11.60 | 7.26 | 18.82 | 8.55 | 22.14 | 9.16 | 25.14 |
2–3 m | 5.30 | 12.24 | 11.02 | 25.21 | 10.91 | 24.84 | 9.99 | 23.35 |
3–4 m | 7.71 | 15.46 | 9.22 | 18.59 | 10.70 | 21.68 | 9.64 | 20.10 |
4–5 m | 6.33 | 11.54 | 12.02 | 21.57 | 12.24 | 22.16 | 10.35 | 19.79 |
5–6 m | 7.28 | 11.92 | 11.80 | 19.50 | 13.20 | 21.69 | 11.39 | 32.93 |
6–7 m | 9.19 | 13.89 | 13.65 | 20.74 | 13.69 | 21.09 | 10.55 | 28.09 |
7–8 m | 9.37 | 10.62 | 15.07 | 16.30 | 13.14 | 14.56 | 10.83 | 20.98 |
8–9 m | 10.72 | 11.27 | 18.18 | 18.39 | 15.11 | 15.89 | 12.52 | 22.29 |
9–10 m | 10.34 | 10.14 | 13.86 | 13.55 | 15.52 | 26.08 | ||
10–11 m | 10.96 | 10.04 | 16.73 | 15.37 | 10.34 | 16.16 | ||
11–12 m | 10.10 | 8.81 | 14.96 | 13.00 | 11.17 | 16.56 | ||
12–13 m | 8.90 | 7.35 | 18.05 | 14.65 | 16.06 | 22.22 | ||
13–14 m | 11.26 | 8.88 | 14.07 | 18.83 | 14.55 | 19.46 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ozelim, L.C.d.S.M.; Ferrari de Campos, D.J.; Cavalcante, A.L.B.; Camapum de Carvalho, J. An Energy-Based Big Data Framework to Estimate the Young’s Moduli of the Soils Drilled during the Execution of Continuous Flight Auger Piles. Axioms 2023, 12, 340. https://doi.org/10.3390/axioms12040340
Ozelim LCdSM, Ferrari de Campos DJ, Cavalcante ALB, Camapum de Carvalho J. An Energy-Based Big Data Framework to Estimate the Young’s Moduli of the Soils Drilled during the Execution of Continuous Flight Auger Piles. Axioms. 2023; 12(4):340. https://doi.org/10.3390/axioms12040340
Chicago/Turabian StyleOzelim, Luan Carlos de Sena Monteiro, Darym Júnior Ferrari de Campos, André Luís Brasil Cavalcante, and Jose Camapum de Carvalho. 2023. "An Energy-Based Big Data Framework to Estimate the Young’s Moduli of the Soils Drilled during the Execution of Continuous Flight Auger Piles" Axioms 12, no. 4: 340. https://doi.org/10.3390/axioms12040340
APA StyleOzelim, L. C. d. S. M., Ferrari de Campos, D. J., Cavalcante, A. L. B., & Camapum de Carvalho, J. (2023). An Energy-Based Big Data Framework to Estimate the Young’s Moduli of the Soils Drilled during the Execution of Continuous Flight Auger Piles. Axioms, 12(4), 340. https://doi.org/10.3390/axioms12040340