Existence and Uniqueness Theorems for a Variable-Order Fractional Differential Equation with Delay
Abstract
:1. Introduction
2. Preliminaries
- (i)
- for all
- (ii)
- for all
3. Existence of Solutions
- (HY1)
- Let us consider a positive integer and a finite sequence such that , .Denote , Then, is a partition of .Consider a piecewise function , with respect to , given by:
- (HY2)
- Let be continuous, , and there exists a , with for and .
4. Ulam–Hyers Stability
5. Example
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Deimling, K. Nonlinear Functional Analysis; Springer: New York, NY, USA, 1985. [Google Scholar]
- Samko, S. Fractional integration and differentiation of variable order: An overview. Nonlinear Dyn. 2013, 71, 653–662. [Google Scholar] [CrossRef]
- Alshehri, H.M.; Khan, A. A fractional order Hepatitis C mathematical model with Mittag-Leffler kernel. J. Funct. Spaces. 2021, 2021, 2524027. [Google Scholar] [CrossRef]
- Khan, H.; Alzabut, J.; Shah, A.; Etemad, S.; Rezapour, S.; Park, C. A study on the fractal-fractional tobacco smoking model. AIMS Math. 2022, 7, 13887–13909. [Google Scholar] [CrossRef]
- Khan, H.; Alzabut, J.; Baleanu, D.; Alobaidi, G.; Rehman, M. Existence of solutions and a numerical scheme for a generalized hybrid class of n-coupled modified ABC-fractional differential equations with an application. AIMS Math. 2023, 8, 6609–6625. [Google Scholar] [CrossRef]
- Al-Refai, M.; Baleanu, D. On an Extension of the Operator with Mittag-Leffler Kernel. Fractals 2022, 30, 2240129. [Google Scholar] [CrossRef]
- Al-Refai, M. Proper inverse operators of fractional derivatives with nonsingular kernels. Rend. Circ. Mat. Palermo Ser. 2 2021, 71, 525–535. [Google Scholar] [CrossRef]
- Shah, K.; Ali, A.; Zeb, S.; Khan, A.; Alqudah, M.A.; Abdeljawad, T. Study of fractional order dynamics of nonlinear mathematical model. Alexand. Eng. J. 2022, 61, 11211–11224. [Google Scholar] [CrossRef]
- Khan, A.; Khan, Z.A.; Abdeljawad, T.; Khan, H. Analytical analysis of fractional-order sequential hybrid system with numerical application. Adv. Continuous Discr. Models. 2022, 12, 1–9. [Google Scholar] [CrossRef]
- Khan, A.; Shah, K.; Abdeljawad, T.; Alqudah, M.A. Existence of results and computational analysis of a fractional order two strain epidemic model. Results Phys. 2022, 39, 105649. [Google Scholar] [CrossRef]
- Benkerrouche, A.; Souid, M.S.; Karapinar, E.; Hakem, A. On the boundary value problems of Hadamard fractional differential equations of variable order. Math. Meth. Appl. Sci. 2022, 46, 3187–3203. [Google Scholar] [CrossRef]
- Khan, A.; Ain, Q.T.; Abdeljawad, T.; Nisar, K.S. Exact Controllability of Hilfer Fractional Differential System with Non-instantaneous Impluleses and State Dependent Delay. Qual. Theory Dyn. Syst. 2023, 22, 62. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, S.; Khan, A. On fractional coupled logistic maps: Chaos analysis and fractal control. Nonlinear Dyn. 2023, 111, 5889–5904. [Google Scholar] [CrossRef]
- Akgul, A.; Baleanu, D. On solutions of variable-order fractional differential equations. Int. J. Optim. Control. Theor. Appl. 2017, 7, 112–116. [Google Scholar] [CrossRef] [Green Version]
- Refice, A.; Souid, M.S.; Stamova, I. On the boundary value problems of Hadamard fractional differential equations of variable order via Kuratowski MNC technique. Mathematics 2021, 9, 1134. [Google Scholar] [CrossRef]
- Bai, Y.; Kong, H. Existence of solutions for nonlinear Caputo-Hadamard fractional differential equations via the method of upper and lower solutions. J. Nonlinear Sci. Appl. 2017, 10, 5744–5752. [Google Scholar] [CrossRef] [Green Version]
- Telli, B.; Souid, M.S.; Stamova, I. Boundary-Value Problem for Nonlinear Fractional Differential Equations of Variable Order with Finite Delay via Kuratowski Measure of Noncompactness. Axioms 2023, 12, 80. [Google Scholar] [CrossRef]
- Wang, H.; Zheng, X. Analysis and numerical solution of a nonlinear variable-order fractional differential equation. Adv. Comput. Math. 2019, 45, 2647–2675. [Google Scholar] [CrossRef]
- Guo, D.; Lakshmikantham, V.; Liu, X. Nonlinear Integral Equations in Abstract Spaces; Springer Science & Business Media: Berlin, Germany, 2013; p. 373. [Google Scholar]
- Hristova, S.; Benkerrouche, A.; Souid, M.S.; Hakem, A. Boundary value problems of Hadamard fractional differential equations of variable order. Symmetry 2021, 13, 896. [Google Scholar] [CrossRef]
- Podlubny, I. Fractional Differential Equations; Academic Press: San Diego, CA, USA, 1999. [Google Scholar]
- Samko, S.G.; Boss, B. Integration and differentiation to a variable fractional order. Integral Transform. Spec. Funct. 1993, 1, 277–300. [Google Scholar] [CrossRef]
- Sousa, J.V.D.C.; de Oliveira, E.C. Two new fractional derivatives of variable order with non-singular kernel and fractional differential equation. Comput. Appl. Math. 2018, 37, 5375–5394. [Google Scholar] [CrossRef]
- Tarasov, V.E. Fractional Dynamics: Application of Fractional Calculus to Dynamics of Particles, Fields and Media; Springer: Berlin/Heidelberg, Germany; Higher Education Press: Beijing, China, 2010. [Google Scholar]
- Zhang, S.; Hu, L. The existence of solutions and generalized Lyapunov-type inequalities to boundary value problems of differential equations of variable order. AIMS Math. 2020, 5, 2923–2943. [Google Scholar] [CrossRef]
- Samko, S.G. Fractional integration and differentiation of variable order. Anal. Math. 1995, 21, 213–236. [Google Scholar] [CrossRef]
- Valério, D.; Costa, J.S. Variable-order fractional derivatives and their numerical approximations. Signal Process. 2011, 91, 470–483. [Google Scholar] [CrossRef]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; North-Holland Mathematics Studies, 204; Elsevier Science B.V.: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Zhang, S. Existence of solutions for two-point boundary-value problems with singular differential equations of variable order. Electron. J. Differ. Equ. 2013, 2013, 1–16. [Google Scholar]
- Zhang, H.; Li, S.; Hu, L. The existeness and uniqueness result of solutions to initial value problems of nonlinear diffusion equations involving with the conformable variable derivative. Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. Mat. 2019, 113, 1601–1623. [Google Scholar] [CrossRef]
- Benchohra, M.; Lazreg, J.E. Existence and Ulam stability for nonlinear implicit fractional differential equations with Hadamard derivative. Stud. Univ. Babes-Bolyai Math. 2017, 62, 27–38. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Telli, B.; Souid, M.S.; Alzabut, J.; Khan, H. Existence and Uniqueness Theorems for a Variable-Order Fractional Differential Equation with Delay. Axioms 2023, 12, 339. https://doi.org/10.3390/axioms12040339
Telli B, Souid MS, Alzabut J, Khan H. Existence and Uniqueness Theorems for a Variable-Order Fractional Differential Equation with Delay. Axioms. 2023; 12(4):339. https://doi.org/10.3390/axioms12040339
Chicago/Turabian StyleTelli, Benoumran, Mohammed Said Souid, Jehad Alzabut, and Hasib Khan. 2023. "Existence and Uniqueness Theorems for a Variable-Order Fractional Differential Equation with Delay" Axioms 12, no. 4: 339. https://doi.org/10.3390/axioms12040339