Coefficient Bounds for a Family of s-Fold Symmetric Bi-Univalent Functions
Abstract
:1. Introduction
1.1. The Class
1.2. The Class
2. Main Results
3. Applications of Salagean Differential Operator
3.1. The Class
3.2. The Class
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Srivastava, H.M.; Mishra, A.K.; Gochhayat, P. Certain subclasses of analytic and bi-univalent functions. Appl. Math. Lett. 2010, 23, 1188–1192. [Google Scholar] [CrossRef]
- Lewin, M. On a coefficient problem for bi-univalent functions. Proc. Am. Math. Soc. 1967, 18, 63–68. [Google Scholar] [CrossRef]
- Brannan, D.A.; Clunie, J.G. Aspects of contemporary complex analysis. In Proceedings of the NATO Advanced Study Institute Held at the University of Durham; Academic Press: New York, NY, USA, 1980. [Google Scholar]
- Netanyahu, E. The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in |z| < 1. Arch. Ration. Mech. Anal. 1969, 32, 100–112. [Google Scholar]
- Tan, D.L. Coefficient estimates for bi-univalent functions. Chin. Ann. Math. Ser. A 1984, 5, 559–568. [Google Scholar]
- Brannan, D.A.; Taha, T.S. On some classes of bi-univalent functions. Math. Anal. Appl. 1985, 3, 18–21. [Google Scholar]
- Khan, M.F.; Al-Shbeil, I.; Aloraini, N.; Khan, N.; Khan, S. Applications of Symmetric Quantum Calculus to the Class of Harmonic Functions. Symmetry 2022, 14, 2188. [Google Scholar] [CrossRef]
- Al-Shbeil, I.; Srivastava, H.M.; Arif, M.; Haq, M.; Khan, N.; Khan, B. Majorization results based upon the Bernardi integral operator. Symmetry 2022, 14, 1404. [Google Scholar] [CrossRef]
- Saliu, A.; Jabeen, K.; Al-Shbeil, I.; Aloraini, N.; Mali, S.N. On q-Limaçon Functions. Symmetry 2022, 14, 2422. [Google Scholar] [CrossRef]
- Al-shbeil, I.; Gong, J.; Shaba, T.G. Coefficients Inequalities for the Bi-Univalent Functions Related to q-Babalola Convolution Operator. Fractal Fract. 2023, 7, 155. [Google Scholar] [CrossRef]
- Al-shbeil, N.A.I.; Catas, A.; Srivastava, H.M. Coefficient Estimates of New Families of Analytic Functions Associated with q-Hermite Polynomials. Axioms 2023, 14, 52. [Google Scholar] [CrossRef]
- Rehman, M.S.U.; Ahmad, Q.Z.; Al-shbeil, I.; Ahmad, S.; Khan, A.; Khan, B.; Gong, J. Coefficient Inequalities for Multivalent Janowski Type q-Starlike Functions Involving Certain Conic Domains. Axioms 2022, 11, 494. [Google Scholar] [CrossRef]
- Caglar, M.; Deniz, E.; Srivastava, H.M. Second Hankel determinant for certain subclasses of bi-univalent functions. Turk. J. Math. 2017, 41, 694–706. [Google Scholar] [CrossRef]
- Xu, Q.-H.; Xiao, H.-G.; Srivastava, H.M. A certain general subclass of analytic and bi-univalent functions and associated coefficient estimate problems. Appl. Math. Comput. 2012, 218, 11461–11465. [Google Scholar] [CrossRef]
- Al-Shbeil, I.; Wanas, A.K.; Benali, A.; Cătaş, A. Coefficient Bounds for a Certain Family of Biunivalent Functions Defined by Gegenbauer Polynomials. J. Math. 2022, 2022, 6946424. [Google Scholar] [CrossRef]
- Al-shbeil, I.; Shaba, T.G.; Catas, A. Second Hankel Determinant for the Subclass of Bi-Univalent Functions Using q-Chebyshev Polynomial and Hohlov Operator. Fractals Fract. 2022, 6, 186. [Google Scholar] [CrossRef]
- Al-shbeil, I.; Saliu, A.; Catas, A.; Malik, S.N. Some Geometrical Results Associated with Secant Hyperbolic Functions. Mathematics 2022, 10, 14. [Google Scholar] [CrossRef]
- Ghazy, A.; Amoush, A.; Murugusundaramoorthy, G. Certain subclasses of -pseudo bi-univalent functions with respect to symmetric points associated with the Gegenbauer polynomial. Afr. Mat. 2023, 34, 11. [Google Scholar] [CrossRef]
- Yousef, F.; Amourah, A.; Frasin, B.A.; Bulboac, T. An Avant-Garde construction for subclasses of analytic bi-univalent functions. Axioms 2022, 11, 267. [Google Scholar] [CrossRef]
- Amini, E.; Omari, S.A.; Nonlaopon, K.; Baleanu, D. Estimates for coefficients of bi-univalent functions associated with a fractional q-difference operator. Symmetry 2022, 14, 879. [Google Scholar] [CrossRef]
- Saliu, A.; Jabeen, K.; Al-shbeil, I.; Oladejo, S.O. Radius and Differential Subordination Results for Starlikeness Associated with Limaçon Class. J. Funct. Spaces 2022, 2022, 8264693. [Google Scholar] [CrossRef]
- Swamy, S.R.; Bulut, S.; Sailaja, Y. Some special families of holomorphic and Salagean type bi-univalent functions associated with Horadam polynomials involving modified sigmoid activation function. Hacet. J. Math. Stat. 2021, 50, 710–720. [Google Scholar] [CrossRef]
- Amourah, A.; Frasin, B.A.; Ahmad, M.; Yousef, F. Exploiting the Pascal distribution series and Gegenbauer polynomials to construct and study a new subclass of analytic bi-univalent functions. Symmetry 2022, 14, 147. [Google Scholar] [CrossRef]
- Brannan, D.A.; Taha, T.S. On some classes of bi-univalent functions. Stud. Univ. Babe Bolyai Math. 1986, 31, 70–77. [Google Scholar]
- Srivastava, H.M.; Motamednezhad, A.; Adegani, E.A. Faber polynomial coefficient estimates for bi-univalent functions defined by using differential subordination and a certain fractional derivative operator. Mathematics 2020, 8, 172. [Google Scholar] [CrossRef]
- El-Qadeem, A.H.; Mamon, M.A.; Elshazly, I.S. Application of Einstein function on bi-univalent functions defined on the unit disc. Symmetry 2022, 14, 758. [Google Scholar] [CrossRef]
- Buyankara, M.; Çaglar, M.; Cotîrla, L.I. New subclasses of bi-univalent functions with respect to the symmetric points defined by Bernoulli polynomials. Axioms 2022, 11, 652. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Sivasubramanian, S.; Sivakumar, R. Initial coefficient bounds for a subclass of m-fold symmetric bi-univalent functions. Tbilisi Math. J. 2014, 7, 1–10. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Gaboury, S.; Ghanim, F. Coefficients estimate for some subclasses of m-fold symmetric bi-univalent functions. Acta Univ. Apulensis Math. Inform. 2015, 41, 153–164. [Google Scholar]
- Srivastava, H.M.; Gaboury, S.; Ghanim, F. Initial coefficients estimate for some subclasses of M-fold symmetric bi-univalent functions. Acta Math. Sci. Ser. B 2016, 36, 863–971. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Zireh, A.; Hajiparvaneh, S. Coefficients estimate for some subclasses of m-fold symmetric bi-univalent functions. Filomat 2018, 32, 3143–3153. [Google Scholar] [CrossRef]
- Sakar, F.M.; Tasar, N. Coefficients bounds for certain subclasses of m-fold symmetric bi-univalent functions. New Trends Math. Sci. 2019, 7, 62–70. [Google Scholar] [CrossRef]
- Wanas, A.K.; Páll-Szabó, A.O. Coefficient bounds for new subclasses of analytic and m-fold symmetric bi-univalent functions. Stud. Univ. Babes Bolai Math. 2021, 66, 659–666. [Google Scholar] [CrossRef]
- Bulut, S.; Salehian, S.; Motamednezhad, A. Comprehensive subclass of m-fold symmetric biunivalent functions defined by subordination. Afr. Mat. 2021, 32, 531–541. [Google Scholar] [CrossRef]
- Swamy, S.R.; Frasin, B.A.; Aldawish, I. Fekete-Szegö functional problem for a special family of m-fold symmetric bi-univalent functions. Mathematics 2022, 10, 1165. [Google Scholar] [CrossRef]
- Oros, G.I.; Cotîrlă, L.I. Coefficient Estimates and the Fekete–Szegö Problem for new classes of m-fold symmetric bi-univalent functions. Mathematics 2022, 10, 129. [Google Scholar] [CrossRef]
- Motamednezhadi, A.; Salehian, S.; Magesh, N. Coefficient estimates for subclass of m-fold symmetric bi-univalent functions. Kragujev. J. Math. 2022, 46, 395–406. [Google Scholar] [CrossRef]
- Aldawish, I.; Swamy, S.R.; Frasin, B.A. A special family of m-fold symmetric bi-univalent functions satisfying subordination condition. Fractal Fract. 2022, 6, 271. [Google Scholar] [CrossRef]
- Breaz, D.; Cotîrlă, L.I. The study of coefficient estimates and Fekete–Szegö inequalities for the new classes of m-fold symmetric bi-univalent functions defined using an operator. J. Inequalities Appl. 2023, 2023, 15. [Google Scholar] [CrossRef]
- Minda, W.C.; Minda, D. A unified treatment of some special classes of univalent functions. In Proceedings of the Conference on Complex Analysis, Tianjin, China, 19–23 June 1992; Li, T.J., Ren, F., Yang, L., Zhang, S., Eds.; Conference Proceedings and Lecture Notes in Analysis. International Press: Cambridge, MA, USA, 1994; Volume I, pp. 157–169. [Google Scholar]
- Tang, H.; Srivastava, H.M.; Sivasubramanian, S.; Gurusamy, P. Fekete–Szegö functional problems of m-fold symmetric bi-univalent functions. J. Math. Ineq. 2016, 10, 1063–1092. [Google Scholar] [CrossRef]
- Motamednezhad, A.; Salehian, S. Certain class of m-fold functions by applying Faber polynomial expansions. Stud. Univ. Babe s-Bolyai Math. 2021, 66, 491–505. [Google Scholar] [CrossRef]
- Ali, R.M.; Lee, S.K.; Ravichandran, V.; Supramaniam, S. Coefficient estimates for bi-univalent Ma-Minda starlike and convex functions. Appl. Math. Lett. 2012, 25, 344–351. [Google Scholar] [CrossRef]
- Altinkaya, A.; Yalcinn, S. Coefficient bounds for certain subclasses of m-fold symmetric bi-univalent functions. J. Math. 2015, 2015, 241683. [Google Scholar] [CrossRef]
- Duren, P.L. Univalent Functions. In Grundlehren der Mathematischen Wissenschaften; Springer: New York, NY, USA, 1983; Volume 259. [Google Scholar]
- Murugusundaramoorthy, G.; Magesh, N.; Prameela, V. Coefficient bounds for certain subclasses of bi-univalent function. Abst. Appl. Anal. 2013, 2013, 573017. [Google Scholar] [CrossRef]
- Salagean, G.S. Subclasses of univalent functions. In Complex Analysis, Fifth Romanian–Finnish Seminar, Part 1 (Bucharest, 1981); Lecture Notes in Mathematics 1013; Springer: Berlin/Heidelberg, Germany, 1983; pp. 362–372. [Google Scholar]
- Bulut, S. Coefficient estimates for general subclasses of m-fold symmetric analytic bi-univalent functions. Turk. J. Math. 2016, 40, 1386–1397. [Google Scholar] [CrossRef]
- Saliu, A.; Al-Shbeil, I.; Gong, J.; Malik, S.N.; Aloraini, N. Properties of q-Symmetric Starlike Functions of Janowski Type. Symmetry 2022, 14, 1907. [Google Scholar] [CrossRef]
- Al-shbeil, I.; Wanas, A.K.; Saliu, A.; Catas, A. Applications of Beta Negative Binomial Distribution and Laguerre Polynomials on Ozaki Bi-Close-to-Convex Functions. Axioms 2022, 11, 7. [Google Scholar] [CrossRef]
- Murugusundaramoorthy, G.; Cotîrla, L.I. Bi-univalent functions of complex order defined by Hohlov operator associated with legendrae polynomial. AIMS Math. 2022, 7, 8733–8750. [Google Scholar] [CrossRef]
- Páll-Szabó, Á.O.; Oros, G.I. Coefficient related studies for new classes of bi-univalent functions. Mathematics 2020, 8, 1110. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Mostafa, A.O.; Aouf, M.K.; Zayed, H.M. Basic and fractional q-calculus and associated Fekete-Szegö problem for p-valently q-starlike functions and p-valently q-convex functions of complex order. Miskolc. Math. Notes 2019, 20, 489–509. [Google Scholar] [CrossRef]
- Al-shbeil, I.; Gong, J.; Khan, S.; Khan, N.; Khan, A.; Khan, M.F.; Goswami, A. Hankel and Symmetric Toeplitz Determinants for a New Subclass of q-Starlike Functions. Fractals Fract. 2022, 6, 658. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-shbeil, I.; Khan, N.; Tchier, F.; Xin, Q.; Malik, S.N.; Khan, S. Coefficient Bounds for a Family of s-Fold Symmetric Bi-Univalent Functions. Axioms 2023, 12, 317. https://doi.org/10.3390/axioms12040317
Al-shbeil I, Khan N, Tchier F, Xin Q, Malik SN, Khan S. Coefficient Bounds for a Family of s-Fold Symmetric Bi-Univalent Functions. Axioms. 2023; 12(4):317. https://doi.org/10.3390/axioms12040317
Chicago/Turabian StyleAl-shbeil, Isra, Nazar Khan, Fairouz Tchier, Qin Xin, Sarfraz Nawaz Malik, and Shahid Khan. 2023. "Coefficient Bounds for a Family of s-Fold Symmetric Bi-Univalent Functions" Axioms 12, no. 4: 317. https://doi.org/10.3390/axioms12040317
APA StyleAl-shbeil, I., Khan, N., Tchier, F., Xin, Q., Malik, S. N., & Khan, S. (2023). Coefficient Bounds for a Family of s-Fold Symmetric Bi-Univalent Functions. Axioms, 12(4), 317. https://doi.org/10.3390/axioms12040317