# New Iterative Scheme Involving Self-Adaptive Method for Solving Mixed Variational Inequalities

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Preliminaries

**Lemma 1.**

**Proof.**

**Definition 1**

**.**We can define the resolvent operator involving a maximal monotone operator A on H, for a given constant $\rho >0,$ such as:

**Remark 1.**

**Lemma 2**

**.**For a given $f\in E,$ and $z\in H,$ we have

**Lemma 3**

**.**Given a function $f\in H$ as a solution of the inequality (1), then we have

**Lemma 4.**

## 3. Main Results

Algorithm 1 Self-adaptive Iterative Scheme |

Step 0: Given $\rho >0,\phantom{\rule{4pt}{0ex}}\u03f5>0,\phantom{\rule{4pt}{0ex}}\mu \in (0,\phantom{\rule{4pt}{0ex}}1),\phantom{\rule{4pt}{0ex}}\gamma \in [1,\phantom{\rule{4pt}{0ex}}2),\phantom{\rule{4pt}{0ex}}{\delta}_{0},\phantom{\rule{4pt}{0ex}}\delta \in (0,\phantom{\rule{4pt}{0ex}}1)$ and ${f}^{0}\in H,$ set $n=0.$ Step 1: Stopping criteria: Set ${\rho}_{n}=\rho .$ If $\left(\right)open="\parallel "\; close="\parallel ">R\left({f}^{n}\right)$ otherwise, satisfying
$$\left(\right)open="\parallel "\; close="\parallel ">{\rho}_{n}(T\left({f}^{n}\right)-T\left({h}^{n}\right)),$$
where
$${h}^{n}={J}_{\varphi}[{f}^{n}-\gamma D\left({f}^{n}\right)-\gamma T\left({f}^{n}\right)],$$
Step 2: Compute
$$D\left({f}^{n}\right)=R\left({f}^{n}\right)-\rho T\left({f}^{n}\right)+\rho T{J}_{\varphi}[{f}^{n}-\rho T\left({f}^{n}\right)],$$
where
$$R\left({f}^{n}\right):={f}^{n}-{J}_{\varphi}[{f}^{n}-\rho T\left({f}^{n}\right)].$$
Step 3: Get the next iterate
$$\begin{array}{ccc}\hfill {h}^{n+1}& =& {J}_{\varphi}[{f}^{n}-\gamma D\left({f}^{n}\right)-\gamma T\left({f}^{n}\right)],\hfill \end{array}$$
$$\begin{array}{ccc}\hfill {f}^{n+1}& =& {J}_{\varphi}[g\left({h}^{n+1}\right)-\rho T\left({h}^{n+1}\right)],\hfill \end{array}$$
then set $\rho =\frac{{\rho}_{n}}{\mu},$ else set $\rho ={\rho}_{n}.$ Repeat step 1 by substituting $n=n+1$. |

**Theorem 1.**

**Proof.**

**f**${}^{n})$ give the following expression:

## 4. Numerical Results

**Example 1.**

## 5. Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## References

- Baioochi, C.; Capelo, A. Variational and Quasi-Variational Inequalities; John Wiley and Sons: New York, NY, USA, 1984. [Google Scholar]
- Brezis, H. Operateurs Maximaux Monotone et Semigroups de Contraction dan les Espaces de Hilbert; Elsevier: Ameterdam, The Netherlands, 1973. [Google Scholar]
- Daniele, P.; Giannessi, F.; Maugeri, A. Equilibrium Problems and Variational Models; Kluwer Academic Publishers: London, UK, 2003. [Google Scholar]
- Tu, K.; Xia, F. A projection type algorithm for solving generalized mixed variational inequalities. Act. Math. Sci.
**2016**, 36, 1619–1630. [Google Scholar] [CrossRef] - Rahman, H.; Kumam, P.; Argyros, L.K.; Alreshidi, N.A. Modified proximal-like extragaradient method for two classes of equilibriums in hilbert spaces with applications. Comput. Appl. Math.
**2023**, 40, 38. [Google Scholar] [CrossRef] - Stampacchia, G. Formes bilineaires coercivites sur les ensembles convexes. C. R. Acad. Sci.
**1964**, 258, 4413–4416. [Google Scholar] - He, B.S.; Yang, Z.H.; Yuan, X.M. An Approximate proximal-extragradient type method for monotone variational inequalities. J. Math. Anal. Appl.
**2004**, 300, 362–374. [Google Scholar] [CrossRef] [Green Version] - Kinderlehrer, D.; Stampacchia, G. An Introduction to Variational Inequalities and Their Applications; SIAM: Philadelphia, PA, USA, 2000. [Google Scholar]
- Glowinski, R.; Lions, J.L.; Trbmolis, R. Numerical Analysis of Variational Inequalities; Elsevier: Amsterdam, The Netherlands, 1981. [Google Scholar]
- Cruz, J.Y.B.; Iusem, A.N. Full convergence of an approximate projection method for nonsmooth variational inequalities. Math. Comput. Simul.
**2015**, 114, 2–13. [Google Scholar] [CrossRef] - Noor, M.A.; Ullah, S. Predictor-corrector self-adaptive methods for variational inequalities. Transylv. Rev.
**2017**, 16, 4147–4152. [Google Scholar] - Noor, M.A. Some recent advances in variational inequalities, part I, basic concepts. N. Z. J. Math.
**1997**, 26, 53–80. [Google Scholar] - Bux, M.; Ullah, S.; Arif, M.S.; Abodayeh, K. A self-Adaptive Technique for Solving Variational Inequalities: A New Approach to the Problem. J. Funct. Spaces
**2022**, 2022, 7078707. [Google Scholar] [CrossRef] - Shi, P. Equivalence of variational inequalities with Wiener–Hopf equations. Proc. Am. Math. Soc.
**1991**, 111, 339–346. [Google Scholar] [CrossRef] - Ullah, S.; Noor, M.A. An efficient method for solving new general mixed variational inequalities. J. Inequal. Spec.
**2020**, 11, 1–9. [Google Scholar] - Alzabut, J.; Khuddush, M.; Selvam, A.G.M.; Vignesh, D. Second Order Iterative Dynamic Boundary Value Problems with Mixed Derivative Operators with Applications. Qual. Theory Dyn. Syst.
**2023**, 22, 32. [Google Scholar] [CrossRef] - Dyab, W.M.; Sakr, A.A.; Ibrahim, M.S.; Wu, K. Variational Analysis of a Dually Polarized Waveguide Skew Loaded by Dielectric Slab. IEEE Microw. Wirel. Components Lett.
**2020**, 30, 737–740. [Google Scholar] [CrossRef] - Sanaullah, K.; Ullah, S.; Arif, M.S.; Abodayeh, K.; Fayyaz, A. Self-Adaptive Predictor-Corrector Approach for General Variational Inequalities Using a Fixed-Point Formulation. J. Funct. Spaces
**2022**, 2022, 2478644. [Google Scholar] [CrossRef] - Bnouhachem, A. A self-adaptive method for solving general mixed variational inequalities. J. Math. Anal. Appl.
**2005**, 309, 136–150. [Google Scholar] [CrossRef] - Bnouhachem, A.; Noor, M.A. Numerical methods for general mixed variational inequalities. App. Math. Comput.
**2008**, 204, 27–36. [Google Scholar] [CrossRef] - Noor, M.A. A class of new iterative methods for general mixed variational inequalities. Math. Comput. Model.
**2001**, 31, 11–19. [Google Scholar] [CrossRef] - Moudafi, A.; Thera, M. Finding a zero of the sum of two maximal monotone operators. J. Optim. Theory Appl.
**1994**, 94, 425–448. [Google Scholar] [CrossRef] - Smith, M.J. The existence, uniqueness and stability of traffic c equilibria. Trans. Res.
**1979**, 133, 295–304. [Google Scholar] [CrossRef] - Jarad, F.; Abdeljawad, T. Variational principles in the frame of certain generalized fractional derivatives. Discret. Contin. Syst. Ser. S
**2020**, 13, 695–708. [Google Scholar] [CrossRef] [Green Version]

Order of Matrix | Algorithm 1 |
---|---|

n | No. It. |

100 | 42 |

200 | 54 |

300 | 46 |

500 | 31 |

700 | 41 |

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Mukheimer, A.; Ullah, S.; Bux, M.; Arif, M.S.; Abodayeh, K.
New Iterative Scheme Involving Self-Adaptive Method for Solving Mixed Variational Inequalities. *Axioms* **2023**, *12*, 310.
https://doi.org/10.3390/axioms12030310

**AMA Style**

Mukheimer A, Ullah S, Bux M, Arif MS, Abodayeh K.
New Iterative Scheme Involving Self-Adaptive Method for Solving Mixed Variational Inequalities. *Axioms*. 2023; 12(3):310.
https://doi.org/10.3390/axioms12030310

**Chicago/Turabian Style**

Mukheimer, Aiman, Saleem Ullah, Muhammad Bux, Muhammad Shoaib Arif, and Kamaleldin Abodayeh.
2023. "New Iterative Scheme Involving Self-Adaptive Method for Solving Mixed Variational Inequalities" *Axioms* 12, no. 3: 310.
https://doi.org/10.3390/axioms12030310