Basic Properties for Certain Subclasses of Meromorphic p-Valent Functions with Connected q-Analogue of Linear Differential Operator
Abstract
:1. Introduction
2. Basic Properties of the Subclass (η, A, B)
3. Neighborhoods and Partial Sums
4. Concluding Remarks and Observations
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bulboacă, T. Differential Subordinations and Superordinations: Recent Results; House of Scientific Book Publishing: Cluj-Napoca, Romania, 2005. [Google Scholar]
- Miller, S.S.; Mocanu, P.T. Differential Subordinations: Theory and Applications, Series on Monographs and Textbooks in Pure and Applied Mathematics; Marcel Dekker Inc.: New York, NY, USA; Basel, Switzerland, 2000; Volume 225. [Google Scholar]
- Jackson, F.H. On q-definite integrals. Quart. J. Pure Appl. Math. 1910, 41, 193–203. [Google Scholar]
- Abu Risha, M.H.; Annaby, M.H.; Ismail, M.E.H.; Mansour, Z.S. Linear q-difference equations. Z. Anal. Anwend. 2007, 26, 481–494. [Google Scholar] [CrossRef] [Green Version]
- Jackson, F.H. On q-functions and a certain difference operator. Trans. Royal Soc. Edinburgh 1909, 46, 253–281. [Google Scholar] [CrossRef]
- Srivastava, H.M. Certain q-polynomial expansions for functions of several variables. I and II. IMA J. Appl. Math. 1983, 30, 205–209. [Google Scholar] [CrossRef]
- Srivastava, H.M. Univalent functions, fractional calculus, and associated generalized hypergeometric functions. In Univalent Functions, Fractional Calculus, and Their Applications; Srivastava, H.M., Owa, S., Eds.; Halsted Press (Ellis Horwood Limited): Chichester, UK; John Wiley and Sons: New York, NY, USA; Chichester, UK; Brisbane, Australia; Toronto, ON, Canada, 1989; pp. 329–354. [Google Scholar]
- Srivastava, H.M.; El-Deeb, S.M. A certain class of analytic functions of complex order with a q-analogue of integral operators. Miskolc Math Notes 2020, 21, 417–433. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Karlsson, P.W. Multiple Gaussian Hypergeometric Series; Wiley: New York, NY, USA, 1985. [Google Scholar]
- El-Deeb, S.M.; Bulboacă, T.; El-Matary, B.M. Maclaurin Coefficient Estimates of Bi-Univalent Functions Connected with the q-Derivative. Mathematics 2020, 8, 418. [Google Scholar] [CrossRef] [Green Version]
- Gasper, G.; Rahman, M. Basic hypergeometric series (with a Foreword by Richard Askey). In Encyclopedia of Mathematics and Its Applications; Cambridge University Press: Cambridge, UK, 1990; Volume 35. [Google Scholar]
- El-Deeb, S.M.; El-Matary, B.M. Q-analogue of linear differential operator on meromorphic p-valent functions with connected sets. Appl. Math. Sci. 2020, 14, 621–634. [Google Scholar] [CrossRef]
- Aouf, M.K. A certain subclass of meromorphically starlike functions with positive coefficients. Rend. Mat. 1989, 9, 225–235. [Google Scholar]
- Clunie, J. On meromorphic Schlicht functions. J. Lond. Math. Soc. 1959, 34, 215–216. [Google Scholar] [CrossRef]
- Goodman, A.W. Univalent functions and nonanalytic curves. Proc. Am. Math. Soc. 1957, 8, 898–901. [Google Scholar] [CrossRef]
- Pommerenke, C. On meromorphic starlike functions. Pacific J. Math. 1963, 13, 221–235. [Google Scholar] [CrossRef]
- Miller, J.E. Convex meromorphic mapping and related functions. Proc. Am. Math. Soc. 1970, 25, 220–228. [Google Scholar] [CrossRef]
- Ruscheweyh, S. Neighborhoods of univalent functions. Proc. Am. Math. Soc. 1981, 81, 521–527. [Google Scholar] [CrossRef]
- Altintas, O.; Owa, S. Neighborhoods of certain analytic functions with negative coefficients. Int. J. Math. Math. Sci. 1996, 19, 797–800. [Google Scholar] [CrossRef]
- Altintas, O.; Özkan, Ö.; Srivastava, H.M. Neighborhoods of a class of analytic functions with negative coefficients. Appl. Math. Lett. 2000, 13, 63–67. [Google Scholar] [CrossRef] [Green Version]
- Altintas, O.; Özkan, Ö.; Srivastava, H.M. Neighborhoods of a certain family of multivalent functions with negative coefficient. Comput. Math. Appl. 2004, 47, 1667–1672. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.-L. Properties of some families of meromorphic p-valent functions. Math. Jpn. 2000, 52, 425–434. [Google Scholar]
- Liu, J.-L.; Srivastava, H.M. A linear operator and associated families of meromorphically multivalent functions. J. Math. Anal. Appl. 2000, 259, 566–581. [Google Scholar] [CrossRef]
- El-Ashwah, R.M.; Aouf, M.K.; El-Deeb, S.M. Some properties of certain subclasses of meromorphic multivalent functions of complex order defined by certain linear operator. Acta Univ. Apulensis 2014, 40, 265–282. [Google Scholar]
- Aouf, M.K. On a certain class of meromorphic univalent functions with positive coefficients. Rend. Mat. 1991, 7, 209–219. [Google Scholar]
- Chen, M.P.; Irmak, H.; Srivastava, H.M.; Yu, C.S. Certain subclasses of meromorphically univalent functions with positive or negative coefficients. Panam. Math. J. 1996, 6, 65–77. [Google Scholar]
- Breaz, D.; Cotîrlă, L.I.; Umadevi, E.; Karthikeyan, K.R. Properties of meromorphic spiral-like functions associated with symmetric functions. J. Funct. Spaces 2022, 2022, 344485. [Google Scholar] [CrossRef]
- Irmak, H.; Cho, N.E.; Raina, R.K. Certain inequalities involving meromorphically multivalent functions. Hacet. Bull. Nat. Sci. Eng. Ser. B 2001, 30, 39–43. [Google Scholar]
- Totoi, A.; Cotîrlă, L.I. Preserving classes of meromorphic functions through integral operators. Symmetry 2022, 14, 1545. [Google Scholar] [CrossRef]
- Çağlar, M.; Orhan, H. Univalence criteria for meromorphic functions and quasiconformal extensions. J. Inequalities Appl. 2013, 112, 1732. [Google Scholar] [CrossRef] [Green Version]
- Oros, G.I.; Cătaş, A.; Oros, G. On certain subclasses of meromorphic close-to-convex functions. J. Funct. Spaces 2008, 2008, 246909. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El-Deeb, S.M.; Cotîrlă, L.-I. Basic Properties for Certain Subclasses of Meromorphic p-Valent Functions with Connected q-Analogue of Linear Differential Operator. Axioms 2023, 12, 207. https://doi.org/10.3390/axioms12020207
El-Deeb SM, Cotîrlă L-I. Basic Properties for Certain Subclasses of Meromorphic p-Valent Functions with Connected q-Analogue of Linear Differential Operator. Axioms. 2023; 12(2):207. https://doi.org/10.3390/axioms12020207
Chicago/Turabian StyleEl-Deeb, Sheza M., and Luminiţa-Ioana Cotîrlă. 2023. "Basic Properties for Certain Subclasses of Meromorphic p-Valent Functions with Connected q-Analogue of Linear Differential Operator" Axioms 12, no. 2: 207. https://doi.org/10.3390/axioms12020207
APA StyleEl-Deeb, S. M., & Cotîrlă, L. -I. (2023). Basic Properties for Certain Subclasses of Meromorphic p-Valent Functions with Connected q-Analogue of Linear Differential Operator. Axioms, 12(2), 207. https://doi.org/10.3390/axioms12020207