A Class of Janowski-Type (p,q)-Convex Harmonic Functions Involving a Generalized q-Mittag–Leffler Function
Abstract
:1. Main Concepts of Quantum Calculus
2. Harmonic Functions, Definitions and Motivation
- If , we find the operator investigated by Xu and Liu [38].
- When , we find the operator investigated by Attiya [39].
3. A Set of Main Results
4. Hadamard Product Property
5. Closure Property
6. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jackson, F.H. On q-difference equations. Am. J. Math. 1910, 32, 305–314. [Google Scholar] [CrossRef]
- Jackson, F.H. On q-definite integrals. Q. J. Pure Appl. Math. 1910, 41, 193–203. [Google Scholar]
- Abdeljawad, T.; Benli, B.; Baleanu, D. A generalized q-Mittag-Leffler function by q-captuo fractional linear equations. Abstr. Appl. Anal. 2012, 2012, 546062. [Google Scholar] [CrossRef]
- Abdeljawad, T.; Baleanu, D. Caputo q-fractional initial value problems and a q-analogue Mittag-Leffler function. Commun. Nonlinear Sci. Numer. Simul. 2011, 16, 4682–4688. [Google Scholar] [CrossRef]
- El-Deeb, S.M.; Bulboacă, T. Differential sandwich-type results for symmetric functions connected with a Q-analog integral operator. Mathematics 2019, 7, 1185. [Google Scholar] [CrossRef]
- Frasin, B.A.; Murugusundaramoorthy, G.A. Subordination results for a class of analytic functions defined by q-differential operator. Ann. Univ. Paedagog. Crac. Stud. Math. 2020, 19, 53–64. [Google Scholar] [CrossRef]
- Hadi, S.H.; Darus, M. Differential subordination and superordination of a q-derivative operator connected with the q-exponential function. Int. J. Nonlinear Anal. Appl. 2022, 13, 5865416. [Google Scholar]
- Hadi, S.H.; Darus, M. (p,q)-Chebyshev polynomials for the families of biunivalent function associating a new integral operator with (p,q)-Hurwitz zeta function. Turk. J. Math. 2022, 46, 25. [Google Scholar] [CrossRef]
- Khan, B.; Srivastava, H.M.; Tahir, M.; Darus, M.; Ahmad, Q.Z.; Khan, N. Applications of a certain q-integral operator to the subclasses of analytic and bi-univalent functions. AIMS Math. 2021, 6, 1024–1039. [Google Scholar] [CrossRef]
- Shah, S.A.; Noor, K.I. Study on the q-analogue of a certain family of linear operators. Turkish J. Math. 2019, 43, 2707–2714. [Google Scholar] [CrossRef]
- Shamsan, H.; Latha, S. On generalized bounded mocanu variation related to q-derivative and conic regions. Ann. Pure Appl. Math. 2018, 17, 67–83. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Hadi, S.H.; Darus, M. Some subclasses of p-valent γ-uniformly type q-starlike and q-convex functions defined by using a certain generalized q-Bernardi integral operator. Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. 2023, 117, 50. [Google Scholar] [CrossRef]
- Clunie, J.; Sheil-Small, T. Harmonic univalent functions. Ann. Acad. Sci. Fenn. 1984, 9, 3–25. [Google Scholar] [CrossRef]
- Lewy, H. On the non-vanishing of the Jacobian in certain one-to-one mappings. Bull. Amer. Math. Soc. 1936, 42, 689–692. [Google Scholar] [CrossRef]
- Jahangiri, J.M.; Kim, Y.C.; Srivastava, H.M. Construction of a certain class of harmonic close-to-convex functions associated with the Alexander integral transform. Integral Transform. Spec. Funct. 2003, 14, 237–242. [Google Scholar] [CrossRef]
- Aldweby, H.; Darus, M. A Subclass of harmonic univalent functions associated with q-analogue of Dziok-Srivatava operator. ISRN Math. Anal. 2013, 2013, 382312. [Google Scholar]
- Darus, M.; Al-Shaqsi, K. On certain subclass of harmonic univalent functions. J. Anal. Appl. 2008, 6, 17–28. [Google Scholar]
- Al-Shaqsi, K.; Darus, M. On subclass of harmonic starlike functions with respect to k-symmetric points. Int. Math. Forum 2007, 2, 2799–2805. [Google Scholar] [CrossRef]
- Elhaddad, S.; Aldweby, H.; Darus, M. Some properties on a class of harmonic univalent functions defined by q-analogue of Ruscheweyh operator. J. Math. Anal. 2018, 9, 28–35. [Google Scholar]
- Oshah, A.; Darus, M. A subclass of harmonic univalent functions associated with generalized fractional differential operator. Bull. Calcutta Math. Soc. 2015, 107, 205–218. [Google Scholar]
- Khan, M.F. Certain new class of harmonic functions involving quantum calculus. J. Funct. Spaces 2022, 2022, 6996639. [Google Scholar] [CrossRef]
- Ahuja, O.P.; Jahangiri, J.M. Multivalent harmonic starlike functions. Ann. Univ. Mariae Curie-Sklodowska 2001, 55, 1–13. [Google Scholar]
- Ahuja, O.P.; Jahangiri, J.M. Multivalent harmonic starlike functions with missing coefficients. Math. Sci. Res. J. 2003, 7, 347–352. [Google Scholar]
- Aouf, M.K.; Moustafa, A.O.; Adwan, E.A. Subclass of multivalent harmonic functions defined by Wright generalized hypergeometric functions. J. Complex Anal. 2013, 2013, 397428. [Google Scholar] [CrossRef]
- Yaşar, E.; Yalçın, S. Partial sums of starlike harmonic multivalent functions. Afr. Math. 2015, 26, 53–63. [Google Scholar] [CrossRef]
- Çakmak, S.; Yalçın, S.; Altınkaya, S. A new class of Salagean-type multivalent harmonic functions defined by subordination. Iran. J. Sci. Technol. Trans. Sci. 2020, 44, 1899–1904. [Google Scholar] [CrossRef]
- Mittag-Leffler, G.M. Sur la nouvelle function Eα(x). CR Acad. Sci. Paris 1903, 137, 554–558. [Google Scholar]
- Wiman, A. Uber den fundamental satz in der theory der funktionen. Acta Math. 1905, 29, 191–201. [Google Scholar] [CrossRef]
- Shukla, A.K.; Prajapati, J.C. On a generalization of Mittag-Leffler function and its properties. J. Math. Anal. Appl. 2007, 336, 797–811. [Google Scholar] [CrossRef]
- Bansal, D.; Prajapat, J.K. Certain geometric properties of the Mittag-Leffler functions. Complex Var. Ellip. Equ. 2016, 61, 338–350. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Bansal, D. Close-to-convexity of a certain family of q-Mittag-Leffer functions. J. Nonlinear Var. Anal. 2017, 1, 61–69. [Google Scholar]
- Agarwal, P.; Chand, M.; Certain, J.S. Integrals involving generalized Mittag-Leffler functions. Proc. Natl. Acad. Sci. India Sect. A 2015, 85, 359–371. [Google Scholar] [CrossRef]
- Aouf, M.K. Fekete-Szegö properties for classes of complex order and defined by new generalization of q-Mittag Leffler function. Afr. Mat. 2022, 33, 15. [Google Scholar] [CrossRef]
- Bas, E.; Acay, B. The direct spectral problem via local derivative including truncated Mittag-Leffler function. Appl. Math. Comput. 2020, 367, 124787. [Google Scholar] [CrossRef]
- Cang, Y.-L.; Liu, J.-L. A family of multivalent analytic functions associated with Srivastava-Tomovski generalization of the Mittag-Leffler function. Filomat 2018, 32, 4619–4625. [Google Scholar] [CrossRef]
- Paneva-Konovska, J. Series in Mittag-Leffler functions: Inequalities and convergent theorems. Fract. Calc. Appl. Anal. 2010, 13, 403–414. [Google Scholar]
- Hadi, S.H.; Darus, M.; Park, C.; Lee, J.R. Some geometric properties of multivalent functions associated with a new generalized q-Mittag-Leffler function. AIMS Math. 2022, 7, 11772–11783. [Google Scholar] [CrossRef]
- Xu, Y.-H.; Liu, J.-L. Convolution and Partial Sums of Certain Multivalent Analytic Functions Involving Srivastava–Tomovski Generalization of the Mittag–Leffler Function. Symmetry 2018, 10, 597. [Google Scholar] [CrossRef]
- Attiya, A.A. Some applications of Mittag-Leffler function in the unit disk. Filomat 2016, 30, 2075–2081. [Google Scholar] [CrossRef]
- Shi, L.; Khan, Q.; Srivastava, G.; Liu, J.-L.; Arif, M. A study of multivalent q-starlike functions connected with circular domain. Mathematics 2019, 7, 670. [Google Scholar] [CrossRef]
- Aouf, M.K.; Seoudy, T.M. Certain subclasses of multivalently non-Bazilevic functions involving a generalized Mittag–Leffler function. ROMAI J. 2019, 15, 13–24. [Google Scholar]
- Yassen, M.F. Subordination results for certain class of analytic functions associated with Mittag-Leffler function. J. Comp. Anal. Appl. 2019, 26, 738–746. [Google Scholar]
- Srivastava, H.M.; Tomovski, Z. Fractional calculus with an integral operator containing a generalized Mittag-Leffler function in the kernal. Appl. Math. Comput. 2009, 211, 198–210. [Google Scholar] [CrossRef]
- Kiryakova, V. Criteria for univalence of the Dziok-Srivastava and the Srivastava-Wright operators in the class A. Appl. Math. Comput. 2011, 218, 883–892. [Google Scholar] [CrossRef]
- Srivastava, H.M. On an extension of the Mittag-Leffler function. Yokohama Math. J. 1968, 16, 77–88. [Google Scholar]
- Srivastava, H.M. Some Fox-Wright generalized hypergeometric functions and associated families of convolution operators. Appl. Anal. Discrete Math. 2007, 1, 56–71. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hadi, S.H.; Darus, M.; Alb Lupaş, A. A Class of Janowski-Type (p,q)-Convex Harmonic Functions Involving a Generalized q-Mittag–Leffler Function. Axioms 2023, 12, 190. https://doi.org/10.3390/axioms12020190
Hadi SH, Darus M, Alb Lupaş A. A Class of Janowski-Type (p,q)-Convex Harmonic Functions Involving a Generalized q-Mittag–Leffler Function. Axioms. 2023; 12(2):190. https://doi.org/10.3390/axioms12020190
Chicago/Turabian StyleHadi, Sarem H., Maslina Darus, and Alina Alb Lupaş. 2023. "A Class of Janowski-Type (p,q)-Convex Harmonic Functions Involving a Generalized q-Mittag–Leffler Function" Axioms 12, no. 2: 190. https://doi.org/10.3390/axioms12020190
APA StyleHadi, S. H., Darus, M., & Alb Lupaş, A. (2023). A Class of Janowski-Type (p,q)-Convex Harmonic Functions Involving a Generalized q-Mittag–Leffler Function. Axioms, 12(2), 190. https://doi.org/10.3390/axioms12020190