A New Subclass of Bi-Univalent Functions Defined by a Certain Integral Operator
Abstract
:1. Introduction
- 1.
- For the Horadam polynomials reduce to the Fibonacci polynomials
- 2.
- For and , the Horadam polynomials become the Lucas polynomials
- 3.
- For , and the Horadam polynomials reduce to the Chebyshev polynomials of the first kind;
- 4.
- For and the Horadam polynomials become the Chebyshev polynomials of the second kind;
- 5.
- For and the Horadam polynomials reduce to the Pell polynomials
- 6.
- For and the Horadam polynomials become the Pell-Lucas polynomials of the first kind.
2. Coefficient Estimates for the Subclass
3. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fekete, M.; Szegö, G. Eine Bemerkung über ungerade schlichte Funktionen. J. Lond. Math. Soc. 1933, 8, 85–89. [Google Scholar] [CrossRef]
- Pfluger, A. The Fekete-Szegö inequality by a variational method. Ann. Acad. Sci. Fenn. Ser. A I Math. 1984, 10, 447–454. [Google Scholar] [CrossRef]
- Duren, P.L. Univalent Functions; Grundlehren der Mathematischen Wissenschaften; Springer: Berlin, Germany, 1983; Volume 259. [Google Scholar]
- Lewin, M. On a coefficient problem for bi-univalent functions. Proc. Am. Math. Soc. 1967, 18, 63–68. [Google Scholar]
- Brannan, D.A.; Clunie, J.G. Aspects of contemporary complex analysis. In Proceedings of the NATO Advanced Study Institute Held at the University of Durham; Academic Press: New York, NY, USA, 1980. [Google Scholar]
- Netanyahu, E. The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in |ξ| < 1. Arch. Rational Mech. Anal. 1969, 32, 100–112. [Google Scholar]
- Kedzierawski, A.W. Some remarks on bi-univalent functions. Ann. Univ. Mariae-Curie-Sklodowska Sect. A 1985, 39, 77–81. [Google Scholar]
- Tan, D.L. Coefficient estimates for bi-univalent functions. Chin. Ann. Math. Ser. A 1984, 5, 559–568. [Google Scholar]
- Brannan, D.A.; Taha, S.T. On some classes of bi-univalent functions. In KFAS Proceedings Series; Mazhar, S.M., Hamoui, A., Faour, N.S., Eds.; Pergamon Press: Oxford, UK, 1988; Volume 3, pp. 53–60. [Google Scholar]
- Srivastava, H.M.; Mishra, A.K.; Gochhayat, P. Certain subclasses of analytic and bi-univalent functions. Appl. Math. Lett. 2010, 23, 1188–1192. [Google Scholar] [CrossRef]
- Xu, Q.H.; Gui, Y.C.; Srivastava, H.M. Coefficient estimates for a certain subclass of analytic and bi-univalent functions. Appl. Math. Lett. 2012, 25, 990–994. [Google Scholar]
- Altınkaya, Ş.; Yalçın, S. Faber polynomial coefficient bounds for a subclass of bi-univalent functions. C. R. Acad. Sci. Paris Sér. I 2015, 353, 1075–1080. [Google Scholar]
- Bulut, S. Faber polynomial coefficient estimates for a comprehensive subclass of analytic bi-univalent functions. C. R. Acad. Sci. Paris Sér. I 2014, 352, 479–484. [Google Scholar] [CrossRef]
- Çağlar, M.; Orhan, H.; Yağmur, N. Coefficient bounds for new subclasses of bi-univalent functions. Filomat 2013, 27, 1165–1171. [Google Scholar]
- Eker, S.S. Coefficient bounds for subclasses of m-fold symmetric bi-univalent functions. Turk. J. Math. 2016, 40, 641–646. [Google Scholar] [CrossRef]
- Frasin, B.A.; Aouf, M.K. New subclasses of bi-univalent functions. Appl. Math. Lett. 2011, 24, 1569–1573. [Google Scholar] [CrossRef]
- Hamidi, S.G.; Jahangiri, J.M. Faber polynomial coefficient estimates for analytic bi-close-to-convex functions. C. R. Acad. Sci. Paris Sér. I 2014, 352, 17–20. [Google Scholar] [CrossRef]
- Kanas, S.; Kim, S.A.; Sivasubramanian, S. Verification of Brannan and Clunie’s conjecture for certain subclasses of bi-univalent function. Ann. Polon. Math. 2015, 113, 295–304. [Google Scholar]
- Orhan, H.; Magesh, N.; Balaji, V.K. Initial coefficient bounds for a general class of bi-univalent functions. Filomat 2015, 29, 1259–1267. [Google Scholar]
- Srivastava, H.M.; Bulut, S.; Çağlar, M.; Yağmur, N. Coefficient estimates for a general subclass of analytic and bi-univalent functions. Filomat 2013, 27, 831–842. [Google Scholar]
- Xu, Q.H.; Xiao, H.G.; Srivastava, H.M. A certain general subclass of analytic and bi-univalent functions and associated coefficient estimate problems. Appl. Math. Comput. 2012, 218, 11461–11465. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Eker, S.S.; Ali, R.M. Coefficient estimates for a certain class of analytic and bi-univalent functions. Filomat 2015, 29, 1839–1845. [Google Scholar]
- Deniz, E. Certain subclasses of bi-univalent functions satisfying subordinate conditions. J. Class. Anal. 2013, 2, 49–60. [Google Scholar] [CrossRef]
- Kumar, S.S.; Kumar, V.; Ravichandran, V. Estimates for the initial coefficients of bi-univalent functions. Tamsui Oxf. J. Inform. Math. Sci. 2013, 29, 487–504. [Google Scholar]
- Jackson, F.H. On q-functions and a certain difference operator. Earth Environ. Sci. Trans. R. Soc. Edinb. 1909, 46, 253–281. [Google Scholar] [CrossRef]
- Jackson, F.H. On q-definite integrals. Q. J. Pure Appl. Math. 1910, 41, 193–203. [Google Scholar]
- Aral, A.; Gupta, V. Generalized q-Baskakov operators. Math. Slovaca 2011, 61, 619–634. [Google Scholar]
- Aral, A. On q-Baskakov type operators. Demonstr. Math. 2009, 42, 109–122. [Google Scholar]
- Anastassiou, G.A.; Gal, S.G. Geometric and approximation properties of generalized singular integrals in the unit disk. J. Korean Math. Soc. 2006, 23, 425–443. [Google Scholar] [CrossRef]
- Aral, A. On the generalized Picard and Gauss Weierstrass singular integrals. J. Comput. Anal. Appl. 2006, 8, 249–261. [Google Scholar]
- Kanas, S.; Raducanu, D. Some class of analytic functions related to conic domains. Math. Slovaca 2014, 64, 1183–1196. [Google Scholar]
- Aldweby, H.; Darus, M. A subclass of harmonic univalent functions associated with q-analogue of Dziok-Srivastava operator. ISRN Math. Anal. 2013, 2013, 382312. [Google Scholar]
- Mahmood, S.; Sokol, J. New subclass of analytic functions in conical domain associated with Ruscheweyh q-differential operator. Results Math. 2017, 71, 1345–1357. [Google Scholar] [CrossRef]
- Srivastava, H.M. Univalent functions, fractional calculus, and associated generalized hypergeometric functions. In Univalent Functions, Fractional Calculus, and Their Applications; Srivastava, H.M., Owa, S., Eds.; Halsted Press (Ellis Horwood Limited): Chichester, UK; John Wiley and Sons: New York, NY, USA, 1989; pp. 329–354. [Google Scholar]
- Arif, M.; Haq, M.U.; Liu, J.L. A subfamily of univalent functions associated with q-analogue of Noor integral operator. J. Funct. Spaces 2018, 2018, 3818915. [Google Scholar] [CrossRef]
- Noor, K.I.; Noor, M.A. On integral operators. J. Math. Anal. Appl. 1999, 238, 341–352. [Google Scholar]
- Noor, K.I. On new classes of integral operators. J. Geom. 1999, 16, 71–80. [Google Scholar]
- Horzum, T.; Kocer, E.G. On some properties of Horadam polynomials. Int. Math. Forum. 2009, 4, 1243–1252. [Google Scholar]
- Horadam, A.F.; Mahon, J.M. Pell and Pell-Lucas polynomials. Fibonacci Q. 1985, 23, 7–20. [Google Scholar]
- Altınkaya, Ş. On the (p,q)-Lucas polynomial coefficient bounds of the bi-univalent function class σ. Bol. Soc. Mat. Mex. 2018, 25, 567–575. [Google Scholar]
- Amourah, A.; Frasin, B.A.; Murugusundaramoorthy, G.; Al-Hawary, T. Bi-Bazilevič functions of order ϑ+iδ associated with p;q-Lucas polynomials. AIMS Math. 2021, 6, 4296–4305. [Google Scholar] [CrossRef]
- Koshy, T. Fibonacci and Lucas Numbers with Applications; Wiley: New York, NY, USA, 2019. [Google Scholar]
- Lee, G.Y.; Asci, M. Some properties of the (p,q)- Fibonacci and (p,q)-Lucas polynomials. J. Appl. Math. 2012, 2012, 264842. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Altınkaya, S.; Yalçın, S. Certain subclasses of bi-univalent functions associated with the Horadam polynomials. Iran. J. Sci. Technol. Trans. A Sci. 2019, 43, 1873–1879. [Google Scholar] [CrossRef]
- Yousef, F.; Frasin, B.A.; Al-Hawary, T. Fekete-Szegö inequality for analytic and bi-univalent functions subordinate to Chebyshev polynomials. Filomat 2018, 32, 3229–3236. [Google Scholar]
- Yousef, F.; Alroud, S.; Illafe, M. A comprehensive subclass of bi-univalent functions associated with Chebyshev polynomials of the second kind. Bol. Soc. Mat. Mex. 2020, 26, 329–339. [Google Scholar] [CrossRef]
- Srivastava, H.M. Operators of basic (or q-) calculus and fractional q-calculus and their applications in geometric function theory of complex analysis. Iran. J. Sci. Technol. Trans. A Sci. 2020, 44, 327–344. [Google Scholar] [CrossRef]
- Srivastava, H.M. Some parametric and argument variations of the operators of fractional calculus and related special functions and integral transformations. J. Nonlinear Convex Anal. 2021, 22, 1501–1520. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Breaz, D.; Orhan, H.; Cotîrlă, L.-I.; Arıkan, H. A New Subclass of Bi-Univalent Functions Defined by a Certain Integral Operator. Axioms 2023, 12, 172. https://doi.org/10.3390/axioms12020172
Breaz D, Orhan H, Cotîrlă L-I, Arıkan H. A New Subclass of Bi-Univalent Functions Defined by a Certain Integral Operator. Axioms. 2023; 12(2):172. https://doi.org/10.3390/axioms12020172
Chicago/Turabian StyleBreaz, Daniel, Halit Orhan, Luminiţa-Ioana Cotîrlă, and Hava Arıkan. 2023. "A New Subclass of Bi-Univalent Functions Defined by a Certain Integral Operator" Axioms 12, no. 2: 172. https://doi.org/10.3390/axioms12020172
APA StyleBreaz, D., Orhan, H., Cotîrlă, L. -I., & Arıkan, H. (2023). A New Subclass of Bi-Univalent Functions Defined by a Certain Integral Operator. Axioms, 12(2), 172. https://doi.org/10.3390/axioms12020172