Solution of High-Order Nonlinear Integrable Systems Using Darboux Transformation
Abstract
:1. Introduction
2. A New Soliton Hierarchy
2.1. A Hierarchy of New cKdV Equations
2.2. Generalized Hamiltonian Structures
3. Darboux Transformation
3.1. Spatial Scales of the Darboux Transformation
3.2. Temporal Scales of the Darboux Transformation
4. Conclusions and Remarks
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Tu, G.Z. A trace identity and its applications to the theory of discrete integrable systems. J. Phys. A Math. 1990, 23, 3903–3922. [Google Scholar]
- Wang, D.S.; Chen, F.; Wen, X.Y. Darboux transformation of the general Hirota equation: Multisoliton solutions, breather solutions, and rogue wave solutions. Adv. Differ. Equ. 2016, 2016, 67. [Google Scholar] [CrossRef]
- Avazzadeh, Z.; Nikan, O.; Machado, J.A.T. Solitary Wave Solutions of the Generalized Rosenau-KdV-RLW Equation. Mathematics 2020, 8, 1601. [Google Scholar] [CrossRef]
- Li, N.H.; Gao, B.F. Hamiltonian structures of a coupled Ramani equation. J. Math. Anal. Appl. 2017, 453, 908–916. [Google Scholar] [CrossRef]
- Liu, L.; Wen, X.Y.; Wang, D.S. A new lattice hierarchy: Hamiltonian structures, symplectic map and N-fold Darboux transformation. Appl. Math. Model. 2018, 67, 201–218. [Google Scholar]
- Xia, T.C.; Zhang, G.L.; Fan, E.G. New Integrable Couplings of Generalized Kaup-Newell Hierarchy and Its Hamiltonian Structures. Commun. Theor. Phys. 2011, 56, 1. [Google Scholar] [CrossRef]
- Li, Q.; Chen, D.Y.; Su, S.H. A Direct Method of Hamiltonian Structure. Commun. Theor. Phys. 2011, 56, 17–22. [Google Scholar] [CrossRef]
- Reynolds, A.P.; Bogoyavlenskij, O.I. Lie algebra structures for four-component Hamiltonian hydrodynamic type systems. J. Geom. Phys. 2011, 61, 2400–2409. [Google Scholar] [CrossRef]
- Meng, J.H.; Ma, W.X. Hamiltonian Tri-Integrable Couplings of the AKNS Hierarchy. Commun. Theor. Phys. 2013, 59, 385–392. [Google Scholar]
- Axel, S.H. Higher-order Darboux transformations with foreign auxiliary equations and equivalence with generalized Darboux transformations. Appl. Math. Lett. 2012, 25, 1520–1527. [Google Scholar]
- Yang, J.M.; Li, C.Z.; Li, T.T.; Cheng, Z.N. Darboux Transformation and Solutions of the Two-Component Hirota-Maxwell-Bloch System. Chin. Phys. Lett. 2013, 30, 104201. [Google Scholar] [CrossRef]
- Zhang, N.; Xia, T.C. A New Negative Discrete Hierarchy and Its N-Fold Darboux Transformation. Commun. Theor. Phys. 2017, 68, 687. [Google Scholar] [CrossRef]
- Fan, E.G.; Chow, K.W. Darboux covariant Lax pairs and infinite conservation laws of the (2+1)-dimensional breaking soliton equation. J. Math. Phys. 2011, 52, 023504. [Google Scholar] [CrossRef]
- Lu, R.W.; Xu, X.X.; Zhang, N. Construction of solutions for an integrable differential-difference equation by Darboux-Backlund transformation. Appl. Math. Comput. 2019, 361, 389–397. [Google Scholar] [CrossRef]
- Wang, X.; Cao, J.L.; Chen, Y. Higher-order rogue wave solutions of the three-wave resonant interaction equation via the generalized Darboux transformation. Phys. Scr. 2015, 90, 105201. [Google Scholar] [CrossRef]
- Wang, X.; Chen, Y. Darboux Transformations and N -soliton Solutions of Two (2+1)-Dimensional Nonlinear Equations. Commun. Theor. Phys. 2014, 61, 423–430. [Google Scholar] [CrossRef]
- Lin, R.l.; Du, Y.K. Generalized Darboux Transformation for the Discrete Kadomtsev–Petviashvili Equation with Self-Consistent Sources. Theor. Math. Phys. 2018, 196, 1320–1332. [Google Scholar] [CrossRef]
- Hussain, J. Exact solutions of transaction cost nonlinear models for illiquid markets. J. Math. Comput. Sci. 2021, 23, 263–278. [Google Scholar] [CrossRef]
- Lou, S.Y.; Jia, M.; Tang, X.Y.; Huang, F. Vortices, circumfluence, symmetry groups, and Darboux transformations of the (2+1)-dimensional Euler equation. Phys. Rev. E 2017, 75, 056318. [Google Scholar] [CrossRef]
- Lou, S.Y. A (1+1)-dimensional integrable system with fifth order spectral problems and four dispersion relations. Phys. Lett. A 2020, 384, 126761. [Google Scholar] [CrossRef]
- Gao, X.N.; Lou, S.Y. Bosonization of supersymmetric KdV equation. Phys. Lett. B 2012, 707, 209–215. [Google Scholar] [CrossRef]
- Ngondiep, E. A novel three-level time-split approach for solving two-dimensional nonlinear unsteady convection-diffusion-reaction equation. J. Math. Comput. Sci. 2022, 26, 222–248. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, X.; Hu, J.; Zhang, N. Solution of High-Order Nonlinear Integrable Systems Using Darboux Transformation. Axioms 2023, 12, 1032. https://doi.org/10.3390/axioms12111032
Wu X, Hu J, Zhang N. Solution of High-Order Nonlinear Integrable Systems Using Darboux Transformation. Axioms. 2023; 12(11):1032. https://doi.org/10.3390/axioms12111032
Chicago/Turabian StyleWu, Xinhui, Jiawei Hu, and Ning Zhang. 2023. "Solution of High-Order Nonlinear Integrable Systems Using Darboux Transformation" Axioms 12, no. 11: 1032. https://doi.org/10.3390/axioms12111032
APA StyleWu, X., Hu, J., & Zhang, N. (2023). Solution of High-Order Nonlinear Integrable Systems Using Darboux Transformation. Axioms, 12(11), 1032. https://doi.org/10.3390/axioms12111032