Common Fixed Point of (ψ, β, L)-Generalized Contractive Mapping in Partially Ordered b-Metric Spaces
Abstract
:1. Introduction
2. Preliminaries
- (1)
- if and only if ;
- (2)
- for all ;
- (3)
- for all ,where is a given real number, d is then said to be a b-metric on X, and is said to be a b-metric space. If is still a partially ordered set, then is said to be a partially ordered b-metric space.
- (1)
- If , or holds, then the elements are called comparable;
- (2)
- If for all , then the pair is called partially weakly increasing;
- (3)
- If for all , then the pair is called partially weakly increasing with respect to h;
- (4)
- If , whenever is a sequence in X such that for some , then the pair is called compatible;
- (5)
- If for some ξ in X, then ξ is called a coincidence point of f and g, and w is called a point of coincidence of f and g.
- (6)
- If f and g commute at their coincidence points, i.e., , where , then the pair is called weakly compatible;
- (7)
- If for each , then f is called dominating. If for each , then f is called dominated.
- (c1)
- (c2)
- (c3)
- (c4)
3. Main Results
- (i)
- f or S is b-continuous, are compatible and are weakly compatible;
- (ii)
- g or T is b-continuous, are compatible and are weakly compatible, then the mappings and T possess a common fixed point in X. Moreover, the set of common points of and T is well ordered if and T have a unique common fixed point.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Banach, S. Sur les opérations dans les ensembles abstraits et leur application auxéquations intégrales. Fundam. Math. 1922, 3, 133–181. [Google Scholar] [CrossRef]
- Eshraghisamani, M.; Vaezpour, S.M.; Asadi, M. New fixed point results on Branciari metric spaces. J. Math. Appl. 2017, 8, 132–141. [Google Scholar]
- Gabeleh, M. Best proximity points for weak proximal contractions. Bull. Malays. Math. Sci. Soc. 2015, 38, 143–154. [Google Scholar] [CrossRef]
- Vulpe, I.M.; Ostrajkh, D.; Khojman, F. The topological structure of a quasi-metric space. In Investigations in Functional Analysis and Differential Equations; Math. Sci., Interuniv. Work Collect., Kishinev; 1981; pp. 14–19, Prosevechtchénié, St. Petersburg. (In Russian) [Google Scholar]
- Jovanović, M.; Kadelburg, Z.; Radenović, S. Common fixed point results in metric-type spaces. Fixed Point Theory Appl. 2010, 2010, 978121. [Google Scholar] [CrossRef]
- Lu, N.; He, F.; Du, W.-S. Fundamental questions and new counterexamples for b-metric spaces and Fatou property. Mathematics 2019, 7, 1107. [Google Scholar] [CrossRef]
- Boriceanu, M.; Bota, M.; Petrusel, A. Mutivalued fractals in b-metric spaces. Cent. Eur. J. Math. 2010, 8, 367–377. [Google Scholar] [CrossRef]
- Lu, N.; He, F.; Du, W.-S. On the best areas for Kannan system and Chatterjea system in b-metric spaces. Optimization 2021, 70, 973–986. [Google Scholar] [CrossRef]
- Czerwik, S. Nonlinear set-valued contraction mappings in b-metric spaces. Atti Semin. Mat. Fis. Univ. Modena 1998, 46, 263–276. [Google Scholar]
- Khamsi, M.A.; Hussain, N. KKM mappings in metric type spaces. Nonlinear Anal. 2010, 73, 3123–3129. [Google Scholar] [CrossRef]
- Beg, I.; Abbas, M. Coincidence point and invariant approximation for mappings satisfying generalized weak contractive condition. Fixed Point Theory Appl. 2006, 2006, 978121. [Google Scholar] [CrossRef]
- Abbas, M.; Nazir, T.; Radenović, S. Common fixed points of four maps in partially ordered metric spaces. Appl. Math. Lett. 2011, 24, 1520–1526. [Google Scholar] [CrossRef]
- Esmaily, J.; Vaezpour, S.M.; Rhoades, B.E. Coincidence point theorem for generalized weakly contractions in ordered metric spaces. Appl. Math. Comput. 2012, 219, 1536–1548. [Google Scholar] [CrossRef]
- Abbas, M.; Zulfaqar, I.; Radenović, S. Common fixed point of (ψ,β)-generalized contractive mappings in partially ordered metric spaces. Chin. J. Math. 2014, 9, 5497–5509. [Google Scholar] [CrossRef]
- Huang, H.; Stojan, R.; Jelena, V. On some recent coincidence and immediate consequences in partially ordered b-metric spaces. Fixed Point Theory Appl. 2015, 2015, 63. [Google Scholar] [CrossRef]
- Hussain, N.; Parvaneh, V.; Roshan, J.R.; Kadelburg, Z. Fixed points of cyclic weakly (ψ,φ,L,A,B)-contractive mappings in ordered b-metric spaces with applications. Fixed Point Theory Appl. 2013, 2013, 256. [Google Scholar] [CrossRef]
- Czerwik, S. Contraction mappings in b-metric spaces. Acta Math. Inform. Univ. Ostrav. 1993, 1, 5–11. [Google Scholar]
- Berinde, V.; Pǎcurar, M. The early developments in fixed point theory on b-metric spaces: A brief survey and some important related aspects. Carpathian J. Math. 2022, 38, 523–538. [Google Scholar] [CrossRef]
- Aydi, H.; Bota, M.-F.; Karapınar, E.; Moradi, S. A common fixed point for weak φ-contractions on b-metric spaces. Fixed Point Theory 2012, 13, 337–346. [Google Scholar]
- Berinde, V.; Borcut, M. Tripled fixed point theorems for contractive type mappings in partially ordered metric spaces. Nonlinear Anal. 2011, 74, 4889–4897. [Google Scholar] [CrossRef]
- Bota, M.-F.; Karapınar, E. A note on “ Some results on multi-valued weakly Jungck mappings in b-metric spaces”. Cent. Eur. J. Math. 2013, 11, 1711–1712. [Google Scholar] [CrossRef]
- Bota, M.-F.; Karapınar, E.; Mlesnite, O. Ulam-Hyers stability results for fixed point problems via (α,ψ)-contractive mappings in b-metric spaces. Abstr. Appl. Anal. 2013, 2013, 825293. [Google Scholar] [CrossRef]
- Romaguera, S. On the correlation between Banach contraction principle and Caristi’s fixed point theorem in b-metric spaces. Mathematics 2022, 10, 136. [Google Scholar] [CrossRef]
- Kutbi, M.-A.; Karapınar, E.; Ahmad, J.; Azam, A. Some fixed point results for multi-valued mappings in b-metric spaces. J. Inequal. Appl. 2014, 2014, 126. [Google Scholar] [CrossRef]
- Radenović, S.; Kadelburg, Z.; Jandrlic, D.; Jandrlic, A. Some results on weakly contractive maps. Bull. Iranian Math. Soc. 2012, 38, 625–645. [Google Scholar]
- Radu, M.; Alexandru, M. New fixed point theorems for set-valued contractions in b-metric spaces. J. Fixed Point Theory Appl. 2017, 10, 2153–2163. [Google Scholar]
- Roshan, J.R.; Parvaneh, V.; Altun, I. Some coincidence point results in ordered b-metric spaces and applications in a system of integral equations. Appl. Math. Comput. 2014, 226, 725–737. [Google Scholar] [CrossRef]
- Roshan, J.R.; Parvaneh, V.; Kadelburg, Z. Common fixed point theorems for weakly isotone increasing mappings in ordered b-metric spaces. J. Nonlinear Sci. Appl. 2014, 7, 229–245. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, B.; Huang, H.; Radenović, S. Common Fixed Point of (ψ, β, L)-Generalized Contractive Mapping in Partially Ordered b-Metric Spaces. Axioms 2023, 12, 1008. https://doi.org/10.3390/axioms12111008
Jiang B, Huang H, Radenović S. Common Fixed Point of (ψ, β, L)-Generalized Contractive Mapping in Partially Ordered b-Metric Spaces. Axioms. 2023; 12(11):1008. https://doi.org/10.3390/axioms12111008
Chicago/Turabian StyleJiang, Binghua, Huaping Huang, and Stojan Radenović. 2023. "Common Fixed Point of (ψ, β, L)-Generalized Contractive Mapping in Partially Ordered b-Metric Spaces" Axioms 12, no. 11: 1008. https://doi.org/10.3390/axioms12111008
APA StyleJiang, B., Huang, H., & Radenović, S. (2023). Common Fixed Point of (ψ, β, L)-Generalized Contractive Mapping in Partially Ordered b-Metric Spaces. Axioms, 12(11), 1008. https://doi.org/10.3390/axioms12111008