Two Convergence Results for Inexact Orbits of Nonexpansive Operators in Metric Spaces with Graphs
Abstract
:1. Introduction
2. The First Main Result
3. The Second Result
4. Extensions
5. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Banach, S. Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales. Fund. Math. 1922, 3, 133–181. [Google Scholar] [CrossRef]
- Betiuk-Pilarska, A.; Domínguez Benavides, T. Fixed points for nonexpansive mappings and generalized nonexpansive mappings on Banach lattices. Pure Appl. Func. Anal. 2016, 1, 343–359. [Google Scholar]
- Baitiche, Z.; Derbazi, C.; Alzabut, J.; Samei, M.E.; Kaabar, M.K.A. Monotone iterative method for ψ-Caputo fractional derivative and nonlinear boundary conditions. Fractal Fract. 2021, 5, 81. [Google Scholar] [CrossRef]
- Bruck, R.E.; Kirk, W.A.; Reich, S. Strong and weak convergence theorems for locally nonexpansive mappings in Banach spaces. Nonlinear Anal. 1982, 6, 151–155. [Google Scholar] [CrossRef]
- Butnariu, D.; Reich, S.; Zaslavski, A.J. Convergence to fixed points of inexact orbits of Bregman-monotone and of nonexpansive operators in Banach spaces. Fixed Point Theory Its Appl. 2006, 11–32. [Google Scholar]
- Butnariu, D.; Reich, S.; Zaslavski, A.J. Asymptotic behavior of inexact orbits for a class of operators in complete metric spaces. J. Appl. Anal. 2007, 13, 1–11. [Google Scholar] [CrossRef]
- de Blasi, F.S.; Myjak, J. Sur la convergence des approximations successives pour les contractions non linéaires dans un espace de Banach. C. R. Acad. Sci. Paris 1976, 283, 185–187. [Google Scholar]
- Djafari-Rouhani, B.; Farid, M.; Kazmi, K.R. Common solution to generalized mixed equilibrium problem and fixed point problem for a nonexpansive semigroup in Hilbert space. J. Korean Math. Soc. 2016, 53, 89–114. [Google Scholar] [CrossRef]
- Djafari-Rouhani, B.; Kazmi, K.R.; Moradi, S.; Ali, R.; Khan, S.A. Solving the split equality hierarchical fixed point problem. Fixed Point Theory 2022, 23, 351–369. [Google Scholar] [CrossRef]
- Du, W.-S. Some generalizations of fixed point theorems of Caristi type and Mizoguchi–Takahashi type under relaxed conditions. Bull. Braz. Math. Soc. 2019, 50, 603–624. [Google Scholar] [CrossRef]
- Goebel, K.; Reich, S. Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings; Marcel Dekker: New York, NY, USA; Basel, Switzerland, 1984. [Google Scholar]
- Jachymski, J. Extensions of the Dugundji-Granas and Nadler’s theorems on the continuity of fixed points. Pure Appl. Funct. Anal. 2017, 2, 657–666. [Google Scholar]
- Karapinar, E.; Agarwal, R.P.; Yesilkaya, S.S. Perov type mappings with a contractive iterate. J. Nonlinear Convex Anal. 2021, 22, 2531–2541. [Google Scholar]
- Karapinar, E.; Mitrovic, Z.; Öztürk, A.; Radenovic, S. On a theorem of Ciric in b-metric spaces. Rend. Circ. Mat. Palermo 2021, 70, 217–225. [Google Scholar] [CrossRef]
- Khan, A.A.; Li, J.; Reich, S. Generalized projections on general Banach spaces. J. Nonlinear Convex Anal. 2023, 24, 1079–1112. [Google Scholar]
- Kirk, W.A. Contraction mappings and extensions. In Handbook of Metric Fixed Point Theory; Kluwer: Dordrecht, The Netherlands, 2001; pp. 1–34. [Google Scholar]
- Kozlowski, W.M. An Introduction to Fixed Point Theory in Modular Function Spaces; Springer: Cham, Switzerland, 2014; pp. 159–222. [Google Scholar]
- Ostrowski, A.M. The round-off stability of iterations. Z. Angew. Math. Mech. 1967, 47, 77–81. [Google Scholar] [CrossRef]
- Rakotch, E. A note on contractive mappings. Proc. Am. Math. Soc. 1962, 13, 459–465. [Google Scholar] [CrossRef]
- Samei, M.E. Convergence of an iterative scheme for multifunctions on fuzzy metric spaces. Sahand Commun. Math. Anal. 2019, 15, 91–106. [Google Scholar] [CrossRef]
- Bargetz, C.; Medjic, E. On the rate of convergence of iterated Bregman projections and of the alternating algorithm. J. Math. Anal. Appl. 2020, 481, 123482. [Google Scholar] [CrossRef]
- Butnariu, D.; Davidi, R.; Herman, G.T.; Kazantsev, I.G. Stable convergence behavior under summable perturbations of a class of projection methods for convex feasibility and optimization problems. IEEE J. Sel. Top. Signal Process. 2007, 1, 540–547. [Google Scholar] [CrossRef]
- Censor, Y.; Davidi, R.; Herman, G.T. Perturbation resilience and superiorization of iterative algorithms. Inverse Probl. 2010, 26, 12. [Google Scholar] [CrossRef]
- Censor, Y.; Davidi, R.; Herman, G.T.; Schulte, R.W.; Tetruashvili, L. Projected subgradient minimization versus superiorization. J. Optim. Theory Appl. 2014, 160, 730–747. [Google Scholar] [CrossRef]
- Censor, Y.; Zaknoon, M. Algorithms and convergence results of projection methods for inconsistent feasibility problems: A review. Pure Appl. Func. Anal. 2018, 3, 565–586. [Google Scholar]
- Gibali, A. A new split inverse problem and an application to least intensity feasible solutions. Pure Appl. Funct. Anal. 2017, 2, 243–258. [Google Scholar]
- Izuchukwu, C.; Reich, S.; Shehu, Y.; Taiwo, A. Strong convergence of forward-reflected-backward splitting methods for solving monotone inclusions with applications to image restoration and optimal control. J. Sci. Comput. 2023, 94, 3. [Google Scholar] [CrossRef]
- Nikazad, T.; Davidi, R.; Herman, G.T. Accelerated perturbation-resilient block-iterative projection methods with application to image reconstruction. Inverse Probl. 2012, 28, 19. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, W. The split common fixed point problem and the shrinking projection method for new nonlinear mappings in two Banach spaces. Pure Appl. Funct. Anal. 2017, 2, 685–699. [Google Scholar]
- Takahashi, W. A general iterative method for split common fixed point problems in Hilbert spaces and applications. Pure Appl. Funct. Anal. 2018, 3, 349–369. [Google Scholar]
- SAleomraninejad, M.A.; Rezapour, S.; Shahzad, N. Some fixed point results on a metric space with a graph. Topol. Appl. 2012, 159, 659–663. [Google Scholar] [CrossRef]
- Bojor, F. Fixed point of ϕ-contraction in metric spaces endowed with a graph. Ann. Univ. Craiova Ser. Math. Inform. 2010, 37, 85–92. [Google Scholar]
- Bojor, F. Fixed point theorems for Reich type contractions on metric spaces with a graph. Nonlinear Anal. 2012, 75, 3895–3901. [Google Scholar] [CrossRef]
- Jachymski, J. The contraction principle for mappings on a metric space with a graph. Proc. Am. Math. Soc. 2008, 136, 1359–1373. [Google Scholar] [CrossRef]
- Petrusel, A.; Petrusel, G.; Yao, J.C. Multi-valued graph contraction principle with applications. Optimization 2020, 69, 1541–1556. [Google Scholar] [CrossRef]
- Petrusel, A.; Petrusel, G.; Yao, J.C. Graph contractions in vector-valued metric spaces and applications. Optimization 2021, 70, 763–775. [Google Scholar] [CrossRef]
- Reich, S.; Zaslavski, A.J. Contractive mappings on metric spaces with graphs. Mathematics 2021, 9, 2774. [Google Scholar] [CrossRef]
- Reich, S.; Zaslavski, A.J. Convergence of inexact iterates of strict contractions in metric spaces with graphs. J. Appl. Numer. Optim. 2022, 4, 215–220. [Google Scholar]
- Samei, M.E. Some fixed point results on intuitionistic fuzzy metric spaces with a graph. Sahand Commun. Math. Anal. 2019, 13, 141–152. [Google Scholar] [CrossRef]
- Reich, S.; Zaslavski, A.J. Genericity in Nonlinear Analysis, Developments in Mathematics; Springer: New York, NY, USA, 2014. [Google Scholar]
- Nieto, J.J.; Rodriguez-Lopez, R. Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations. Order 2006, 22, 223–239. [Google Scholar] [CrossRef]
- Ran, A.C.; Reurings, M.C.B. A fixed point theorem in partially ordered sets and some applications to matrix equations. Proc. Am. Math. Soc. 2004, 132, 1435–1443. [Google Scholar] [CrossRef]
- Reich, S.; Zaslavski, A.J. Three convergence results for inexact iterates of uniformly locally nonexpansive mappings. Symmetry 2023, 15, 1084. [Google Scholar] [CrossRef]
- Vulikh, B.Z. Introduction to the Theory of Cones in Normed Spaces; Kalinin State University: Kalinin, Russia, 1977. (In Russian) [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zaslavski, A.J. Two Convergence Results for Inexact Orbits of Nonexpansive Operators in Metric Spaces with Graphs. Axioms 2023, 12, 999. https://doi.org/10.3390/axioms12100999
Zaslavski AJ. Two Convergence Results for Inexact Orbits of Nonexpansive Operators in Metric Spaces with Graphs. Axioms. 2023; 12(10):999. https://doi.org/10.3390/axioms12100999
Chicago/Turabian StyleZaslavski, Alexander J. 2023. "Two Convergence Results for Inexact Orbits of Nonexpansive Operators in Metric Spaces with Graphs" Axioms 12, no. 10: 999. https://doi.org/10.3390/axioms12100999
APA StyleZaslavski, A. J. (2023). Two Convergence Results for Inexact Orbits of Nonexpansive Operators in Metric Spaces with Graphs. Axioms, 12(10), 999. https://doi.org/10.3390/axioms12100999