ω-Limit Sets of Impulsive Semigroups for Hyperbolic Equations
Abstract
:1. Introduction
2. Problem Statement
3. -Limit Set for Impulsive Dynamical Systems
- If then
- If then for , let us denote so that
- If then
- If then for , let us denote so that
- 1.
- The set
- 2.
- For each
- 3.
- If has an infinite number of impulsive points , then the set is precompact.
4. Limit Regimes of the Impulsive Problem (1), (3), (4)
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kato, T. Nonlinear semigroups and evolution equations. J. Math. Soc. Jpn. 1967, 19, 508–520. [Google Scholar] [CrossRef]
- Ablowitz, M.J.; Kaup, D.J.; Newell, A.C.; Segur, H. Nonlinear-evolution equations of physical significance. Phys. Rev. Lett. 1973, 31, 125. [Google Scholar] [CrossRef]
- Zheng, S. Nonlinear Evolution Equations; CRC Press: Boca Raton, FL, USA, 2004. [Google Scholar]
- Samoilenko, A.M.; Perestyuk, N. Impulsive Differential Equations; World Scientific: Singapore, 1995. [Google Scholar]
- Liu, J.H. Nonlinear impulsive evolution equations. Dyn. Contin. Discret. Impuls. Syst. 1999, 6, 77–85. [Google Scholar]
- Samoilenko, A.; Perestyuk, N. Differential Equations with Impulse Effect; Visca Skola: Kiev, Ukraine, 1987. [Google Scholar]
- Akhmet, M. Principles of Discontinuous Dynamical Systems; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Lakshmikantham, V.; Simeonov, P.S.; Bainov, D. Theory of Impulsive Differential Equations; World Scientific: Singapore, 1989; Volume 6. [Google Scholar]
- Goebel, R.; Sanfelice, R.G.; Teel, A.R. Hybrid dynamical systems. IEEE Control Syst. Mag. 2009, 29, 28–93. [Google Scholar] [CrossRef]
- Van Der Schaft, A.J.; Schumacher, H. An Introduction to Hybrid Dynamical Systems; Springer: Berlin/Heidelberg, Germany, 2007; Volume 251. [Google Scholar]
- Goebel, R.; Sanfelice, R.G.; Teel, A.R. Hybrid Dynamical Systems. Modeling, Stability, and Robustness; Princeton University Press: Princeton, NJ, USA, 2012. [Google Scholar]
- Dirac, P.A.M. The Principles of Quantum Mechanics; Oxford University Press: Oxford, UK, 1981; p. 27. [Google Scholar]
- Feketa, P.; Klinshov, V.; Lücken, L. A survey on the modeling of hybrid behaviors: How to account for impulsive jumps properly. Commun. Nonlinear Sci. Numer. Simul. 2021, 103, 105955. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, G.; Sun, Y. Convergence of Collocation Methods for One Class of Impulsive Delay Differential Equations. Axioms 2023, 12, 700. [Google Scholar] [CrossRef]
- Kalidass, M.; Zeng, S.; Yavuz, M. Stability of fractional-order quasi-linear impulsive integro-differential systems with multiple delays. Axioms 2022, 11, 308. [Google Scholar] [CrossRef]
- Liu, W.; Li, P.; Li, X. Impulsive systems with hybrid delayed impulses: Input-to-state stability. Nonlinear Anal. Hybrid Syst. 2022, 46, 101248. [Google Scholar] [CrossRef]
- Fečkan, M.; Kostić, M.; Velinov, D. (ω, ρ)-BVP Solutions of Impulsive Differential Equations of Fractional Order on Banach Spaces. Mathematics 2023, 11, 3086. [Google Scholar] [CrossRef]
- Agarwal, R.P.; Hristova, S. Boundary Value Problem for Impulsive Delay Fractional Differential Equations with Several Generalized Proportional Caputo Fractional Derivatives. Fractal Fract. 2023, 7, 396. [Google Scholar] [CrossRef]
- Hristova, S. Approximate iterative method for initial value problems of impulsive fractional differential equations with generalized proportional fractional derivatives. AIP Conf. Proc. 2023, 2849, 320005. [Google Scholar]
- Xia, M.; Liu, L.; Fang, J.; Zhang, Y. Stability analysis for a class of stochastic differential equations with impulses. Mathematics 2023, 11, 1541. [Google Scholar] [CrossRef]
- Liu, J.; Wei, W.; Xu, W. An averaging principle for stochastic fractional differential equations driven by fBm involving impulses. Fractal Fract. 2022, 6, 256. [Google Scholar] [CrossRef]
- Wu, X.; Zheng, W.X.; Tang, Y.; Jin, X. Stability analysis for impulsive stochastic time-varying systems. IEEE Trans. Autom. Control 2022, 68, 2584–2591. [Google Scholar] [CrossRef]
- Liu, R.; Fečkan, M.; O’Regan, D.; Wang, J. Controllability Results for First Order Impulsive Fuzzy Differential Systems. Axioms 2022, 11, 471. [Google Scholar] [CrossRef]
- Deng, H.; Li, C.; Wang, Y. Asymptotic stability of non-instantaneous impulsive systems and T-S fuzzy non-instantaneous impulsive control for nonlinear systems. IET Control Theory Appl. 2023, 17, 1184–1202. [Google Scholar] [CrossRef]
- Yang, T. Impulsive Control Theory; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2001; Volume 272. [Google Scholar]
- Feketa, P.; Bajcinca, N. On robustness of impulsive stabilization. Automatica 2019, 104, 48–56. [Google Scholar] [CrossRef]
- Li, X.; Rao, R.; Yang, X. Impulsive stabilization on hyper-chaotic financial system under neumann boundary. Mathematics 2022, 10, 1866. [Google Scholar] [CrossRef]
- Kaul, S. On impulsive semidynamical systems. J. Math. Anal. Appl. 1990, 150, 120–128. [Google Scholar] [CrossRef]
- Ciesielski, K. On stability in impulsive dynamical systems. Bull. Pol. Acad. Sci. Math. 2004, 259, 81–91. [Google Scholar] [CrossRef]
- Akhmet, M. Perturbations and Hopf bifurcation of the planar discontinuous dynamical system. Nonlinear Anal. Theory Methods Appl. Ser. A Theory Methods 2005, 60, 163–178. [Google Scholar] [CrossRef]
- Kirilich, V.; Myshkis, A.; Prokhorenko, M. Oscillations of a diaphragm under the action of pulse forces. Ukr. Math. J. 2009, 61, 1357–1363. [Google Scholar] [CrossRef]
- Samoilenko, A.; Samoilenko, V.; Sobchuk, V. On periodic solutions of the equation of a nonlinear oscillator with pulse influence. Ukr. Math. J. 1999, 51, 926–933. [Google Scholar] [CrossRef]
- Asrorov, F.; Sobchuk, V.; Kurylko, O. Finding of bounded solutions to linear impulsive systems. East.-Eur. J. Enterp. Technol. 2019, 6, 14–20. [Google Scholar] [CrossRef]
- Sobchuk, V.; Asrorov, F.; Perehuda, O.; Sukretna, A.; Laptiev, O.; Lukova-Chuiko, N. The Limited Solutions Method for Telecommunications Network Information Security Models. In Proceedings of the 2021 IEEE 3rd International Conference on Advanced Trends in Information Theory (AITT), Kyiv, Ukraine, 15–17 December 2021; pp. 126–131. [Google Scholar]
- Feketa, P.; Perestyuk, Y. Perturbation Theorems for a Multifrequency System with Pulses. J. Math. Sci. 2016, 217, 515–524. [Google Scholar] [CrossRef]
- Tkachenko, V. The Green function and conditions for the existence of invariant sets of impulse systems. Ukr. Math. J. 1989, 41, 1187–1190. [Google Scholar] [CrossRef]
- Perestyuk, M.; Feketa, P. Invariant manifolds of one class of systems of impulsive differential equations. Nonlinear Oscil. 2010, 2, 260–273. [Google Scholar] [CrossRef]
- Feketa, P.; Meurer, T.; Perestyuk, M.; Perestyuk, Y.M. Exponential Stability of Invariant Manifold for a Nonlinear Impulsive Multifrequency System. J. Math. Sci. 2020, 249, 694–703. [Google Scholar] [CrossRef]
- Bonotto, E.; Bortolan, A.; Carvalho, A.; Czaja, R. Global attractors for impulsive dynamical systems—A precompact approach. J. Differ. Equ. 2015, 259, 2602–2625. [Google Scholar] [CrossRef]
- Dashkovskiy, S.; Feketa, P.; Kapustyan, O.V.; Romaniuk, I.V. Existence and invariance of global attractors for impulsive parabolic system without uniqueness. In Modern Mathematics and Mechanics: Fundamentals, Problems and Challenges; Springer: Berlin/Heidelberg, Germany, 2019; pp. 57–78. [Google Scholar]
- Dashkovskiy, S.; Kapustyan, O.; Romaniuk, I. Global attractors of impulsive parabolic inclusions. Discret. Contin. Dyn. Syst. Ser. B 2017, 22, 1875–1886. [Google Scholar] [CrossRef]
- de Mello Bonotto, E.; Kalita, P. On attractors of generalized semiflows with impulses. J. Geom. Anal. 2020, 30, 1412–1449. [Google Scholar] [CrossRef]
- Dashkovskiy, S.; Feketa, P.; Kapustyan, O.; Romaniuk, I. Invariance and stability of global attractors for multi-valued impulsive dynamical systems. J. Math. Anal. Appl. 2018, 458, 193–218. [Google Scholar] [CrossRef]
- Kapustyan, O.; Perestyuk, M.; Romanyuk, I. Stability of global attractors of impulsive infinite-dimensional systems. Ukr. Math. J. 2018, 70, 30–42. [Google Scholar] [CrossRef]
- Caraballo, T.; Uzal, J.M. Dynamics of Nonautomous Impulsive Multivalued Processes. Set-Valued Var. Anal. 2023, 31, 7. [Google Scholar] [CrossRef]
- Temam, R. Infinite-Dimensional Dynamical Systems in Mechanics and Physics, 2nd ed.; Springer: New York, NY, USA, 1997; pp. XXII, 650. [Google Scholar]
- Myshkis, A. Vibrations of the string with energy dissipation and impulsive feedback support. Nonlinear Anal. Theory Methods Appl. 1996, 26, 1271–1278. [Google Scholar] [CrossRef]
- Dashkovskiy, S.; Kapustyan, O.; Gorban, N. Attractors of multivalued impulsive dynamical systems existence and application to reaction-diffusion systems. Math. Probl. Eng. 2021, 2021, 7385450. [Google Scholar] [CrossRef]
- Samoilenko, A.; Perestyuk, N.; Trofimchuk, S. Generalized solutions of impulse systems and the phenomenon of pulsations. Ukr. Math. J. 1991, 43, 610–615. [Google Scholar] [CrossRef]
- Dashkovskiy, S.; Feketa, P. Asymptotic properties of Zeno solutions. Nonlinear Anal. Hybrid Syst. 2018, 30, 256–265. [Google Scholar] [CrossRef]
- Goebel, R.; Sanfelice, R.G. Pointwise asymptotic stability in a hybrid system and well-posed behavior beyond Zeno. SIAM J. Control Optim. 2018, 56, 1358–1385. [Google Scholar] [CrossRef]
- Dashkovskiy, S.; Feketa, P. Prolongation and stability of Zeno solutions to hybrid dynamical systems. IFAC-PapersOnLine 2017, 50, 3429–3434. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feketa, P.; Fedorenko, J.; Bezushchak, D.; Sukretna, A. ω-Limit Sets of Impulsive Semigroups for Hyperbolic Equations. Axioms 2023, 12, 918. https://doi.org/10.3390/axioms12100918
Feketa P, Fedorenko J, Bezushchak D, Sukretna A. ω-Limit Sets of Impulsive Semigroups for Hyperbolic Equations. Axioms. 2023; 12(10):918. https://doi.org/10.3390/axioms12100918
Chicago/Turabian StyleFeketa, Petro, Juliya Fedorenko, Dmytro Bezushchak, and Anna Sukretna. 2023. "ω-Limit Sets of Impulsive Semigroups for Hyperbolic Equations" Axioms 12, no. 10: 918. https://doi.org/10.3390/axioms12100918
APA StyleFeketa, P., Fedorenko, J., Bezushchak, D., & Sukretna, A. (2023). ω-Limit Sets of Impulsive Semigroups for Hyperbolic Equations. Axioms, 12(10), 918. https://doi.org/10.3390/axioms12100918