# A Novel Approach for Individual Design Perception Based on Fuzzy Inference System Training with YUKI Algorithm

^{1}

^{2}

^{3}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Fuzzy C-Means Algorithm

## 3. YUKI Algorithm for Optimization

## 4. Proposed YUKI-Trained Fuzzy Inference System

## 5. Individual Design Perception

## 6. YUKI-Trained Fuzzy Inference System for Individual Design Perception Modelling

## 7. Conclusions

## Author Contributions

## Funding

## Data Availability Statement

## Conflicts of Interest

## References

- Achiche, S.; Appio, F.P.; McAloone, T.C.; Di Minin, A. Fuzzy decision support for tools selection in the core front end activities of new product development. Res. Eng. Des.
**2013**, 24, 1–18. [Google Scholar] [CrossRef] - Sakai, M.; Takenouchi, H.; Tokumaru, M. Design support system with votes from multiple people using digital signage. In Proceedings of the 2014 IEEE International Symposium on Independent Computing (ISIC), Orlando, FL, USA, 9–12 December 2014; pp. 1–6. [Google Scholar]
- Abu-Salih, B.; Wongthongtham, P.; Zhu, D.; Chan, K.Y.; Rudra, A. Affective Design Using Social Big Data. In Social Big Data Analytics; Springer: Berlin/Heidelberg, Germany, 2021; pp. 145–176. [Google Scholar]
- Kobayashi, M. Multi-objective Aesthetic Design Optimization for Minimizing the Effect of Variation in Customer Kansei. Comput. Aided. Des. Appl.
**2019**, 17, 690–698. [Google Scholar] [CrossRef] - Benaissa, B.; Kobayashi, M.; Kinoshita, K. Design aesthetics recommender system based on customer profile and wanted affect. arXiv
**2023**, arXiv:2301.10984. [Google Scholar] - Christensen, A.P.; Cotter, K.N.; Silvia, P.J. Reopening openness to experience: A network analysis of four openness to experience inventories. J. Pers. Assess.
**2019**, 101, 574–588. [Google Scholar] [CrossRef] [PubMed] - Afhami, R.; Mohammadi-Zarghan, S. The big five, aesthetic judgment styles, and art interest. Eur. J. Psychol.
**2018**, 14, 764. [Google Scholar] [CrossRef] - Mohammadi-Zarghan, S.; Afhami, R. Memento Mori: The influence of personality and individual differences on aesthetic appreciation of death-related artworks by Damien Hirst. Mortality
**2019**, 24, 467–485. [Google Scholar] [CrossRef] - DeYoung, C.G. Openness/intellect: A dimension of personality reflecting cognitive exploration. In APA Handbook of Personality and social Psychology, Vol. 4. Personality Processes and Individual Differences; American Psychological Association: Washington, DC, USA, 2015. [Google Scholar]
- Antinori, A.; Carter, O.L.; Smillie, L.D. Seeing it both ways: Openness to experience and binocular rivalry suppression. J. Res. Pers.
**2017**, 68, 15–22. [Google Scholar] [CrossRef] - Benaissa, B.; Kobayashi, M. The consumers’ response to product design: A narrative review. Ergonomics
**2023**, 66, 791–820. [Google Scholar] [CrossRef] - Myszkowski, N.; Storme, M. How personality traits predict design-driven consumer choices. Eur. J. Psychol.
**2012**, 8, 641–650. [Google Scholar] [CrossRef] - Bloch, P.H.; Brunel, F.F.; Arnold, T.J. Individual differences in the centrality of visual product aesthetics: Concept and measurement. J. Consum. Res.
**2003**, 29, 551–565. [Google Scholar] [CrossRef] - Fujiwara, K.; Nagasawa, S. Analysis of psychological factors that influence preference for luxury food and car brands targeting Japanese people. Am. J. Ind. Bus. Manag.
**2015**, 5, 590. [Google Scholar] [CrossRef] - Fujiwara, K.; Nagasawa, S. Relationships among purchase intentions for luxury brands and personality traits based on the Big Five. Am. J. Ind. Bus. Manag.
**2015**, 5, 631. [Google Scholar] [CrossRef] - Shen, H.-C.; Wang, K.-C. Affective product form design using fuzzy Kansei engineering and creativity. J. Ambient Intell. Humaniz. Comput.
**2016**, 7, 875–888. [Google Scholar] [CrossRef] - Yeh, Y.-E. Prediction of optimized color design for sports shoes using an artificial neural network and genetic algorithm. Appl. Sci.
**2020**, 10, 1560. [Google Scholar] [CrossRef] - Ruder, S. An overview of gradient descent optimization algorithms. arXiv
**2016**, arXiv:1609.04747. [Google Scholar] - Abdel-Basset, M.; Abdel-Fatah, L.; Sangaiah, A.K. Metaheuristic algorithms: A comprehensive review. In Computational Intelligence for Multimedia Big Data on the Cloud with Engineering Applications; Academic Press: Cambridge, MA, USA, 2018; pp. 185–231. [Google Scholar]
- Nazari-Shirkouhi, S.; Keramati, A.; Rezaie, K. Improvement of customers’ satisfaction with new product design using an adaptive neuro-fuzzy inference systems approach. Neural Comput. Appl.
**2013**, 23, 333–343. [Google Scholar] [CrossRef] - Lee, A.-S. Investigation of Relationship between Kansei Design Elements of Taiwanese Wooden Furniture and Consumer Demand by Fuzzy Theory. Eng. Proc.
**2023**, 38, 64. [Google Scholar] - Sutono, S.B.; Abdul-Rashid, S.H.; Aoyama, H.; Taha, Z. Fuzzy-based Taguchi method for multi-response optimization of product form design in Kansei engineering: A case study on car form design. J. Adv. Mech. Des. Syst. Manuf.
**2016**, 10, JAMDSM0108. [Google Scholar] [CrossRef] - Wu, Y. Product Appearance Design Based on Consumers’ Kansei Image and Fuzzy Kano Model Satisfaction Evaluation-Case Study of Air Purifier. Comput. Aided. Des. Appl.
**2021**, 18, 1186–1209. [Google Scholar] [CrossRef] - Jiang, W.; Zhang, K.; Zhao, W.; Guo, X. Fuzzy evaluation of kansei attributes using convolutional neural networks. In International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Virtual, 17–19 August 2021; American Society of Mechanical Engineers: New York, NY, USA, 2021; Volume 85376, p. V002T02A051. [Google Scholar]
- Nishimura, Y.; Takenouchi, H.; Tokumaru, M. Extracting Preference Rules Using Kansei Retrieval Agents with Fuzzy Inference. Int. J. Affect. Eng.
**2022**, 21, 181–190. [Google Scholar] [CrossRef] - Takenouchi, H.; Tokumaru, M. Kansei retrieval agent model with fuzzy reasoning. Int. J. Fuzzy Syst.
**2017**, 19, 1803–1811. [Google Scholar] [CrossRef] - Hotta, H.; Hagiwara, M. A fuzzy rule based personal Kansei modeling system. In Proceedings of the 2006 IEEE International Conference on Fuzzy Systems, Vancouver, BC, Canada, 16–21 July 2006; pp. 1031–1037. [Google Scholar]
- Tang, K.-S.; Man, K.-F.; Liu, Z.-F.; Kwong, S. Minimal fuzzy memberships and rules using hierarchical genetic algorithms. IEEE Trans. Ind. Electron.
**1998**, 45, 162–169. [Google Scholar] [CrossRef] - Chen, M.-S.; Wang, S.-W. Fuzzy clustering analysis for optimizing fuzzy membership functions. Fuzzy Sets Syst.
**1999**, 103, 239–254. [Google Scholar] [CrossRef] - Pedrammehr, S.; Hejazian, M.; Chalak Qazani, M.R.; Parvaz, H.; Pakzad, S.; Ettefagh, M.M.; Suhail, A.H. Machine learning-based modelling and meta-heuristic-based optimization of specific tool wear and surface roughness in the milling process. Axioms
**2022**, 11, 430. [Google Scholar] [CrossRef] - Melin, P.; Sánchez, D.; Castro, J.R.; Castillo, O. Design of type-3 fuzzy systems and ensemble neural networks for COVID-19 time series prediction using a firefly algorithm. Axioms
**2022**, 11, 410. [Google Scholar] [CrossRef] - Castillo, O.; Peraza, C.; Ochoa, P.; Amador-Angulo, L.; Melin, P.; Park, Y.; Geem, Z.W. Shadowed type-2 fuzzy systems for dynamic parameter adaptation in harmony search and differential evolution for optimal design of fuzzy controllers. Mathematics
**2021**, 9, 2439. [Google Scholar] [CrossRef] - Jiang, H.; Sabetzadeh, F.; Chan, K.Y. Developing Nonlinear Customer Preferences Models for Product Design Using Opining Mining and Multiobjective PSO-Based ANFIS Approach. Comput. Intell. Neurosci.
**2023**, 2023, 6880172. [Google Scholar] [CrossRef] - Ojha, V.; Abraham, A.; Snášel, V. Heuristic design of fuzzy inference systems: A review of three decades of research. Eng. Appl. Artif. Intell.
**2019**, 85, 845–864. [Google Scholar] [CrossRef] - Dunn, J.C. A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters. J. Cybern.
**1973**, 3, 32–57. [Google Scholar] [CrossRef] - Bezdek, J.C.; Ehrlich, R.; Full, W. FCM: The fuzzy c-means clustering algorithm. Comput. Geosci.
**1984**, 10, 191–203. [Google Scholar] [CrossRef] - Brikh, L.; Guenounou, O.; Bakir, T. Selection of minimum rules from a fuzzy TSK model using a PSO–FCM combination. J. Control. Autom. Electr. Syst.
**2023**, 34, 384–393. [Google Scholar] [CrossRef] - Yang, L.; Yu, K.; Wang, F. PSO-FCM Intelligent Algorithm in Computer Network Data Detection. In International Conference on Cognitive based Information Processing and Applications; Springer: Berlin/Heidelberg, Germany, 2022; pp. 33–41. [Google Scholar]
- Ding, W.; Feng, Z.; Andreu-Perez, J.; Pedrycz, W. Derived multi-population genetic algorithm for adaptive fuzzy c-means clustering. Neural Process. Lett.
**2022**, 55, 2023–2047. [Google Scholar] [CrossRef] - Benaissa, B.; Hocine, N.A.; Khatir, S.; Riahi, M.K.; Mirjalili, S. YUKI Algorithm and POD-RBF for Elastostatic and dynamic crack identification. J. Comput. Sci.
**2021**, 55, 101451. [Google Scholar] [CrossRef] - Al Ali, M.; Shimoda, M.; Benaissa, B.; Kobayashi, M. Non-parametric optimization for lightweight and high heat conductive structures under convection using metaheuristic structure binary-distribution method. Appl. Therm. Eng.
**2023**, 233, 121124. [Google Scholar] [CrossRef] - Bui, D.T.; Bui, Q.-T.; Nguyen, Q.-P.; Pradhan, B.; Nampak, H.; Trinh, P.T. A hybrid artificial intelligence approach using GIS-based neural-fuzzy inference system and particle swarm optimization for forest fire susceptibility modeling at a tropical area. Agric. For. Meteorol.
**2017**, 233, 32–44. [Google Scholar] - Mousavi, S.M.H.; MiriNezhad, S.Y.; Mosleh, M.S.; Dezfoulian, M.H. A PSO fuzzy-expert system: As an assistant for specifying the acceptance by NOET measures, at PH. D level. In Proceedings of the 2017 Artificial Intelligence and Signal Processing Conference (AISP), Shiraz, Iran, 25–27 October 2017; pp. 11–18. [Google Scholar]
- Mousavi, S.M.H.; MiriNezhad, S.Y.; Lyashenko, V. An evolutionary-based adaptive Neuro-fuzzy expert system as a family counselor before marriage with the aim of divorce rate reduction. In Proceedings of the 2nd International Conference on Research Knowledge Base in Computer Engineering and IT, Uttrakhand, India, 24–26 March 2017. [Google Scholar]
- Akay, D.; Duran, B.U.; Duran, E.; Henson, B.; Boran, F.E. Developing a Labeled Affective Magnitude scale and Fuzzy Linguistic scale for tactile feeling. Hum. Factors Ergon. Manuf. Serv. Ind.
**2021**, 31, 13–26. [Google Scholar] [CrossRef] - Sutono, S.B. Selection of representative Kansei adjectives using cluster analysis: A case study on car design. Int. J. Adv. Eng. Manag. Sci.
**2016**, 2, 239691. [Google Scholar] - Perez Mata, M.; Ahmed-Kristensen, S.; Brockhoff, P.B.; Yanagisawa, H. Investigating the influence of product perception and geometric features. Res. Eng. Des.
**2017**, 28, 357–379. [Google Scholar] [CrossRef] - Mata, M.P.; Ahmed-Kristensen, S.; Shea, K. Implementation of design rules for perception into a tool for three-dimensional shape generation using a shape grammar and a parametric model. J. Mech. Des.
**2019**, 141, 011101. [Google Scholar] [CrossRef] - Shieh, M.-D.; Li, Y.; Yang, C.-C. Comparison of multi-objective evolutionary algorithms in hybrid Kansei engineering system for product form design. Adv. Eng. Inform.
**2018**, 36, 31–42. [Google Scholar] [CrossRef] - Quan, H.; Li, S.; Hu, J. Product innovation design based on deep learning and Kansei engineering. Appl. Sci.
**2018**, 8, 2397. [Google Scholar] [CrossRef] - Su, Z.; Yu, S.; Chu, J.; Zhai, Q.; Gong, J.; Fan, H. A novel architecture: Using convolutional neural networks for Kansei attributes automatic evaluation and labeling. Adv. Eng. Inform.
**2020**, 44, 101055. [Google Scholar] [CrossRef] - Kobayashi, M.; Fujita, S.; Wada, T. Aesthetic Design Based on the Analysis of Questionnaire Results Using Deep Learning Techniques. Comput.-Aided Des. Appl.
**2022**, 19, 602–611. [Google Scholar] [CrossRef]

**Figure 1.**The flow chart of the proposed YUKI-trained Fuzzy Inference System for model optimization.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Benaissa, B.; Kobayashi, M.; Kinoshita, K.; Takenouchi, H.
A Novel Approach for Individual Design Perception Based on Fuzzy Inference System Training with YUKI Algorithm. *Axioms* **2023**, *12*, 904.
https://doi.org/10.3390/axioms12100904

**AMA Style**

Benaissa B, Kobayashi M, Kinoshita K, Takenouchi H.
A Novel Approach for Individual Design Perception Based on Fuzzy Inference System Training with YUKI Algorithm. *Axioms*. 2023; 12(10):904.
https://doi.org/10.3390/axioms12100904

**Chicago/Turabian Style**

Benaissa, Brahim, Masakazu Kobayashi, Keita Kinoshita, and Hiroshi Takenouchi.
2023. "A Novel Approach for Individual Design Perception Based on Fuzzy Inference System Training with YUKI Algorithm" *Axioms* 12, no. 10: 904.
https://doi.org/10.3390/axioms12100904