Performance Assessment of Heuristic Genetic Algorithm (HGA) for Electrochemical Impedance Spectroscopy Parameter Estimation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Mathematical Model
2.2. Parameter Estimation Using HGA
2.3. Matlab Optimization Toolbox
3. Results
Attainment of EIS Characteristics Using Heuristic Genetic Algorithms
4. Conclusions
5. Future Work
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pech-Rodríguez, W.J.; Rodríguez-Varela, F.J.; Rocha-Rangel, E.; González-Quijano, D.; Martínez-Loyola, J.C.; Vargas-Gutiérrez, G.; Suarez-Velazquez, G.; Morais, C.; Napporn, T. Cost-effective functionalization of Vulcan XC-72 by using the intermittent microwave heating process as nanocatalyst support for ethanol electrooxidation in acid media. Rev. Mex. Ing. Quím. 2021, 20, 955–973. [Google Scholar] [CrossRef]
- Zapata-Cruz, J.R.; Armendáriz-Mireles, E.N.; Rocha-Rangel, E.; Suarez-Velazquez, G.; González-Quijano, D.; Pech-Rodríguez, W.J. Implementation of Taguchi method to investigate the effect of electrophoretic deposition parameters of SnO2 on dye sensitised solar cell performance. Mater. Technol. 2019, 34, 549–557. [Google Scholar] [CrossRef]
- Bredar, A.R.C.; Chown, A.L.; Burton, A.R.; Farnum, B.H. Electrochemical Impedance Spectroscopy of Metal Oxide Electrodes for Energy Applications. ACS Appl. Energy Mater. 2020, 3, 66–98. [Google Scholar] [CrossRef] [Green Version]
- Dsoke, S.; Pfeifer, K.; Zhao, Z. The role of nanomaterials for supercapacitors and hybrid devices. In Frontiers of Nanoscience; Raccichini, R., Ulissi, U., Eds.; Elsevier: Amsterdam, The Netherlands, 2021; Volume 19, pp. 99–136. [Google Scholar] [CrossRef]
- Zhao, W.; Ci, S. Nanomaterials as Electrode Materials of Microbial Electrolysis Cells for Hydrogen Generation. In Nanomaterials for the Removal of Pollutants and Resource Reutilization; Luo, X., Deng, F., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 213–242. [Google Scholar] [CrossRef]
- AbdelHamid, A.A.; Mendoza-Garcia, A.; Ying, J.Y. Advances in and prospects of nanomaterials’ morphological control for lithium rechargeable batteries. Nano Energy 2022, 93, 106860. [Google Scholar] [CrossRef]
- Choi, W.; Shin, H.-C.; Kim, J.M.; Choi, J.Y.; Yoon, W.S. Modeling and Applications of Electrochemical Impedance Spectroscopy (EIS) for Lithium-ion Batteries. J. Electrochem. Sci. Technol. 2020, 11, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Han, S.B.; Oh, H.; Lee, W.Y.; Won, J.; Chae, S.; Baek, J. On-Line EIS Measurement for High-Power Fuel Cell Systems Using Simulink Real-Time. Energies 2021, 14, 6133. [Google Scholar] [CrossRef]
- Meddings, N.; Heinrich, M.; Overney, F.; Lee, J.S.; Ruiz, V.; Napolitano, E.; Seitz, S.; Hinds, G.; Raccichini, R.; Gaberšček, M.; et al. Application of electrochemical impedance spectroscopy to commercial Li-ion cells: A review. J. Power Source 2020, 480, 228742. [Google Scholar] [CrossRef]
- Caponetto, R.; Matera, F.; Murgano, E.; Privitera, E.; Xibilia, M.G. Fuel Cell Fractional-Order Model via Electrochemical Impedance Spectroscopy. Fractal Fract. 2021, 5, 21. [Google Scholar] [CrossRef]
- Baldinelli, A.; Staffolani, A.; Bidini, G.; Barelli, L.; Nobili, F. An extensive model for renewable energy electrochemical storage with Solid Oxide Cells based on a comprehensive analysis of impedance deconvolution. J. Energy Storage 2021, 33, 102052. [Google Scholar] [CrossRef]
- Qu, D.; Wang, G.; Kafle, J.; Harris, J.; Crain, L.; Jin, Z.; Zheng, D. Electrochemical Impedance and its Applications in Energy-Storage Systems. Small Methods 2018, 2, 1700342. [Google Scholar] [CrossRef]
- George, K.; Van Berkel, M.; Zhang, X.; Sinha, R.; Bieberle-Hütter, A. Impedance Spectra and Surface Coverages Simulated Directly from the Electrochemical Reaction Mechanism: A Nonlinear State-Space Approach. J. Phys. Chem. C 2018, 123, 9981–9992. [Google Scholar] [CrossRef] [Green Version]
- Nara, H.; Yokoshima, T.; Osaka, T. Technology of electrochemical impedance spectroscopy for an energy-sustainable society. Curr. Opin. Electrochem. 2020, 20, 66–77. [Google Scholar] [CrossRef]
- Losantos, R.; Montiel, M.; Mustata, R.; Zorrilla, F.; Valiño, L. Parameter characterization of HTPEMFC using numerical simulation and genetic algorithms. Int. J. Hydrogen Energy 2022, 47, 4814–4826. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Nguyen, T.T.; Tran, T.N. Parameter estimation of photovoltaic cell and module models relied on metaheuristic algorithms including artificial ecosystem optimization. Neural Comput. Appl. 2022, 34, 12819–12844. [Google Scholar] [CrossRef]
- Caliandro, P.; Nakajo, A.; Diethelm, S.; Van Herle, J. Model-assisted identification of solid oxide cell elementary processes by electrochemical impedance spectroscopy measurements. J. Power Source 2019, 436, 226838. [Google Scholar] [CrossRef]
- Kim, H.; Park, C.; Kang, Y. Distribution-guided heuristic search for nonlinear parameter estimation with an application in semiconductor manufacturing. IISE Trans. 2020, 52, 1246–1261. [Google Scholar] [CrossRef]
- El-Shorbagy, M.A.; El-Refaey, A.M. Hybridization of Grasshopper Optimization Algorithm with Genetic Algorithm for Solving System of Non-Linear Equations. IEEE Access 2020, 8, 220944–220961. [Google Scholar] [CrossRef]
- Zain, U.-A.; Mahmood, T.; Shorfuzzaman, M.; Xiong, N.N.; Mehmood, R.M. Aiding Prosumers by Solar Cell Parameter Optimization Using a Hybrid Technique for Achieving Near Realistic P-V Characteristics. IEEE Access 2020, 8, 225416–225423. [Google Scholar] [CrossRef]
- Ruan, H.; Sun, B.; Jiang, J.; Zhang, W.; He, X.; Su, X.; Bian, J.; Gao, W. A modified-electrochemical impedance spectroscopy-based multi-time-scale fractional-order model for lithium-ion batteries. Electrochim. Acta 2020, 394, 139066. [Google Scholar] [CrossRef]
- Middlemiss, L.A.; Rennie, A.J.R.; Sayers, R.; West, A.R. Characterisation of batteries by electrochemical impedance spectroscopy. Energy Rep. 2020, 6, 232–241. [Google Scholar] [CrossRef]
- Abdulrahim, S.M.; Ahmad, Z.; Bahadra, J.; Al-Thani, N.J. Electrochemical Impedance Spectroscopy Analysis of Hole Transporting Material Free Mesoporous and Planar Perovskite Solar Cells. Nanomaterials 2020, 10, 1635. [Google Scholar] [CrossRef] [PubMed]
- Rong, Y.; Ku, Z.; Mei, A.; Liu, T.; Xu, M.; Ko, S.; Li, X.; Han, H. Hole-Conductor-Free Mesoscopic TiO2/CH3NH3PbI3 Heterojunction Solar Cells Based on Anatase Nanosheets and Carbon Counter Electrodes. J. Phys. Chem. Lett. 2014, 5, 2160–2164. [Google Scholar] [CrossRef] [PubMed]
- Feliu, S. Electrochemical Impedance Spectroscopy for the Measurement of the Corrosion Rate of Magnesium Alloys: Brief Review and Challenges. Metals 2020, 10, 775. [Google Scholar] [CrossRef]
- Saady, A.; El-Hajjaji, F.; Taleb, M.; Ismaily Alaoui, K.; El Biache, A.; Mahfoud, A.; Alhouari, G.; Hammouti, B.; Chauhan, D.S.; Quraishi, M.A. Experimental and theoretical tools for corrosion inhibition study of mild steel in aqueous hydrochloric acid solution by new indanones derivatives. Mater. Discov. 2018, 12, 30–42. [Google Scholar] [CrossRef]
- Hajiyan Pour, F.; Rajabi, M.; Behpour, M.; Jafari, Y. Investigation of corrosion protection performance of epoxy coatings modified by ZnO-Cr2O3 nanocomposites on mild steel surfaces. Appl. Chem. 2018, 13, 45–52. [Google Scholar] [CrossRef]
- Zhu, S.; Sun, X.; Gao, X.; Wang, J.; Zhao, N.; Sha, J. Equivalent circuit model recognition of electrochemical impedance spectroscopy via machine learning. J. Electroanal. Chem. 2019, 855, 113627. [Google Scholar] [CrossRef] [Green Version]
- Yang, B.; Wang, J.; Yu, L.; Shu, H.; Yu, T.; Zhang, X.; Yao, W.; Sun, L. A critical survey on proton exchange membrane fuel cell parameter estimation using meta-heuristic algorithms. J. Clean. Prod. 2020, 265, 121660. [Google Scholar] [CrossRef]
- Wang, L.; Chen, Z.; Guo, Y.; Hu, W.; Chang, X.; Wu, P.; Han, C.; Li, J. Accurate Solar Cell Modeling via Genetic Neural Network-Based Meta-Heuristic Algorithms. Front. Energy Res. 2021, 9, 1–14. [Google Scholar] [CrossRef]
- Ohenoja, M.; Leiviskä, K. Observations on the Parameter Estimation Problem of Polymer Electrolyte Membrane Fuel Cell Polarization Curves. Fuel Cells 2020, 20, 516–526. [Google Scholar] [CrossRef]
- Maghawry, A.; Hodhod, R.; Omar, Y.; Kholief, M. An approach for optimizing multi-objective problems using hybrid genetic algorithms. Soft Comput. 2021, 25, 389–405. [Google Scholar] [CrossRef]
- Haeverbeke, M.V.; Stock, M.; Baets, B.D. Practical Equivalent Electrical Circuit Identification for Electrochemical Impedance Spectroscopy Analysis with Gene Expression Programming. IEEE Trans. Instrum. Meas. 2021, 70, 2514612–2514623. [Google Scholar] [CrossRef]
- Gao, F.; Han, L. Implementing the Nelder-Mead simplex algorithm with adaptive parameters. Comput. Optim. Appl. 2012, 51, 259–277. [Google Scholar] [CrossRef]
- Maia, A.; Ferreira, E.; Oliveira, M.C.; Menezes, L.F.; Andrade-Campos, A. Numerical optimization strategies for springback compensation in sheet metal forming. In Computational Methods and Production Engineering; Paulo Davim, J., Ed.; Woodhead Publishing: Sawston, UK, 2013; pp. 51–82. [Google Scholar] [CrossRef]
- Jakus, D.; Čađenović, R.; Vasilj, J.; Sarajčev, P. Optimal Reconfiguration of Distribution Networks Using Hybrid Heuristic-Genetic Algorithm. Energies 2020, 13, 1544. [Google Scholar] [CrossRef] [Green Version]
- Baskin, I.; Ein-Eli, Y. Electrochemoinformatics as an Emerging Scientific Field for Designing Materials and Electrochemical Energy Storage and Conversion Devices—An Application in Battery Science and Technology. Adv. Energy Mater. 2022, 1, 2202380–2202403. [Google Scholar] [CrossRef]
- Wang, J.; Ding, R.; Cao, F.; Li, J.; Dong, H.; Shi, T.; Xing, L.; Liu, J. Comparison of state-of-the-art machine learning algorithms and data-driven optimization methods for mitigating nitrogen crossover in PEM fuel cells. Chem. Eng. J. 2022, 442, 136064–136070. [Google Scholar] [CrossRef]
- Luo, K.; Chen, X.; Zheng, H.; Shi, Z. A review of deep learning approach to predicting the state of health and state of charge of lithium-ion batteries. J. Energy Chem. 2022, 74, 159–173. [Google Scholar] [CrossRef]
- Yang, B.; Zhang, C.-R.; Wang, Y.; Zhao, M.; Yu, H.-Y.; Liu, Z.-J.; Liu, X.-M.; Chen, Y.-H.; Wu, Y.-Z.; Chen, H.-S. Open-circuit voltage loss and dielectric constants as new descriptors in machine learning study on organic photovoltaics. Int. J. Quantum Chem. 2022, 1, e27039. [Google Scholar] [CrossRef]
- Jamilla, C.U.; Mendoza, R.G.; Mendoza, V.M.P. Parameter Estimation in Neutral Delay Differential Equations Using Genetic Algorithm with Multi-Parent Crossover. IEEE Access 2021, 9, 131348–131364. [Google Scholar] [CrossRef]
- Hakimi, D.; Oyewola, D.O.; Yahaya, Y. Bolarin, G. Comparative analysis of genetic crossover operators in knapsack problem. J. Appl. Sci. Environ. Manag. 2016, 20, 593–596. [Google Scholar]
- Saxena, D.; Singh, A.K. Auto-adaptive learning-based workload forecasting in dynamic cloud environment. Int. J. Comput. Appl. 2020, 44, 541–551. [Google Scholar] [CrossRef]
- Câmara, D. Evolution and Evolutionary Algorithms. In Bio-Inspired Networking; Câmara, D., Ed.; Elsevier: Amsterdam, The Netherlands, 2015; pp. 1–30. [Google Scholar] [CrossRef]
- Li, J.; Jiang, X.; Khan, F.; Ye, X.; Wang, S.; Chen, J. Field deployable impedance-based corrosion sensor. Sci. Rep. 2022, 12, 236. [Google Scholar] [CrossRef] [PubMed]
- Lukács, Z.; Kristóf, T. A generalized model of the equivalent circuits in the electrochemical impedance spectroscopy. Electrochim. Acta 2020, 363, 137199. [Google Scholar] [CrossRef]
- Wan, C.; Liyang, Y.; Shen, H. Effects of Electrode Mass-loading on the Electrochemical Properties of Porous MnO2 for Electrochemical Supercapacitor. Int. J. Electrochem. Sci. 2014, 9, 4024–4038. [Google Scholar]
- Montano, J.J.; Grisales Noreña, L.F.; Tobon, A.F.; Gonzalez Montoya, D. Estimation of the parameters of the mathematical model of an equivalent diode of a photovoltaic panel using a continuous genetic algorithm. IEEE Lat. Am. Trans. 2021, 20, 616–623. [Google Scholar] [CrossRef]
- Luo, Y.F. A Multi-Frequency Electrical Impedance Spectroscopy Technique of Artificial Neural Network-Based for the Static State of Charge. Energies 2021, 14, 2526. [Google Scholar] [CrossRef]
- González, F.; Greiner, D.; Mena, V.; Souto, R.M.; Santana, J.J.; Aznárez, J.J. Fitting procedure based on Differential Evolution to evaluate impedance parameters of metal–coating systems. Eng. Comput. 2019, 36, 2960–2982. [Google Scholar] [CrossRef]
- Alhammadi, H.Y.; Romagnoli, J.A. Chapter B4—Process design and operation: Incorporating environmental, profitability, heat integration and controllability considerations. In Computer Aided Chemical Engineering; Seferlis, P., Georgiadis, M.C., Eds.; Elsevier: Amsterdam, The Netherlands, 2004; Volume 17, pp. 264–305. [Google Scholar] [CrossRef]
- Bejarano, L.A.; Espitia, H.E.; Montenegro, C.E. Clustering Analysis for the Pareto Optimal Front in Multi-Objective Optimization. Computation 2022, 10, 37. [Google Scholar] [CrossRef]
- Zhang, Y.; Tang, Q.; Zhang, Y.; Wang, J.; Stimming, U.; Lee, A.A. Identifying degradation patterns of lithium ion batteries from impedance spectroscopy using machine learning. Nat. Commun. 2020, 11, 1706. [Google Scholar] [CrossRef] [Green Version]
- Yang, Q.; Xu, J.; Cao, B.; Li, X. A simplified fractional order impedance model and parameter identification method for lithium-ion batteries. PLoS ONE 2017, 12, 172424. [Google Scholar] [CrossRef] [Green Version]
- Deng, Z.; Zhang, Z.; Lai, Y.; Liu, J.; Li, J.; Liu, Y. Electrochemical Impedance Spectroscopy Study of a Lithium/Sulfur Battery: Modeling and Analysis of Capacity Fading. J. Electrochem. Soc. 2013, 160, A553–A558. [Google Scholar] [CrossRef]
- Theodorokatos, N.; Lytras, M.; Babu, R. A Generalized Pattern Search Algorithm Methodology for solving an Under-Determined System of Equality Constraints to achieve Power System Observability using Synchrophasors. J. Phys. Conf. Ser. 2021, 2090, 012125. [Google Scholar] [CrossRef]
- Li, D.; Yang, D.; Li, L.; Wang, L.; Wang, K. Electrochemical Impedance Spectroscopy Based on the State of Health Estimation for Lithium-Ion Batteries. Energies 2022, 18, 6665. [Google Scholar] [CrossRef]
Model | Commercial Values (+/−5%) | Considerations for the HGA | Estimated Parameters by HGA | Error (%) | |
---|---|---|---|---|---|
Lower bound | Upper bound | ||||
Circuit A | |||||
Rs (Ω) | 2 × 220 | 1 | 2500 | 436.130 | 0.89% |
Rp (Ω) | 1000 | 1 | 2500 | 1005.400 | 0.54% |
Cp (F) | 100 × 10−9 | 1 × 10−9 | 400 × 10−9 | 98.97 × 10−9 | 1.03% |
Circuit B | |||||
Rs (Ω) | 2 × 220 | 1 | 2500 | 438.254 | 0.39% |
Rp (Ω) | 220 | 1 | 2500 | 212.38 | 3.46% |
Cp (F) | 1 × 10−6 | 0.6 × 10−6 | 400 × 10−6 | 1.021 × 10−6 | 2.1% |
Circuit C | |||||
Rs (Ω) | 1000 | 1 | 2500 | 1000.460 | 0.046% |
Rp (Ω) | 1000 | 1 | 2500 | 972.325 | 2.77% |
Cp (F) | 10 × 10−6 | 0.6 × 10−6 | 400 × 10−6 | 10.28 × 10−6 | 2.8% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pech-Rodríguez, W.J.; Suarez-Velázquez, G.G.; Armendáriz-Mireles, E.N.; Calles-Arriaga, C.A.; Rocha-Rangel, E. Performance Assessment of Heuristic Genetic Algorithm (HGA) for Electrochemical Impedance Spectroscopy Parameter Estimation. Axioms 2023, 12, 84. https://doi.org/10.3390/axioms12010084
Pech-Rodríguez WJ, Suarez-Velázquez GG, Armendáriz-Mireles EN, Calles-Arriaga CA, Rocha-Rangel E. Performance Assessment of Heuristic Genetic Algorithm (HGA) for Electrochemical Impedance Spectroscopy Parameter Estimation. Axioms. 2023; 12(1):84. https://doi.org/10.3390/axioms12010084
Chicago/Turabian StylePech-Rodríguez, Wilian J., Gladis G. Suarez-Velázquez, Eddie N. Armendáriz-Mireles, Carlos A. Calles-Arriaga, and E. Rocha-Rangel. 2023. "Performance Assessment of Heuristic Genetic Algorithm (HGA) for Electrochemical Impedance Spectroscopy Parameter Estimation" Axioms 12, no. 1: 84. https://doi.org/10.3390/axioms12010084
APA StylePech-Rodríguez, W. J., Suarez-Velázquez, G. G., Armendáriz-Mireles, E. N., Calles-Arriaga, C. A., & Rocha-Rangel, E. (2023). Performance Assessment of Heuristic Genetic Algorithm (HGA) for Electrochemical Impedance Spectroscopy Parameter Estimation. Axioms, 12(1), 84. https://doi.org/10.3390/axioms12010084