Henri Poincaré’s Comment on Calculus and Albert Einstein’s Comment on Entropy: Mathematical Physics on the Tenth Anniversary of Axioms
1. Solvay 1911: Poincaré (Leibniz Newton Calculus) and Einstein (Boltzmann Gibbs Entropy)
“What I find strange about the way Mr. Planck applies Boltzmann’s equation is that he introduces a state probability W without giving this quantity a physical definition. If one proceeds in such a way, then, to begin with, Boltzmann’s equation does not have a physical meaning. The circumstance that W is equated to the number of complexions belonging to a state does not change anything here; for there is no indication of what is supposed to be meant by the statement that two complexions are equally probable. Even if it were possible to define the complexions in such a manner that the S obtained from Boltzmann’s equation agrees with experience, it seems to me that with this conception of Boltzmann’s principle it is not possible to draw any conclusions about the admissibility of any fundamental theory whatsoever on the basis of the empirically known thermodynamic properties of a system.”[5].
“Neither Herr Boltzmann nor Herr Planck gave a definition of W. They put formally W = number of complexions of the state under consideration”.
2. Mathematical Physics
3. From Solvay 1911 to Axioms 2022: Fractional Calculus and Non-Additive Entropy
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
List of Papers in Special Issue:
References
- Bah, I.; Freed, D.; Moore, G.W.; Nekrasov, N.; Razamat, S.S.; Schaefer-Nameki, S. Snowmass Whitepaper: Physical Mathematics. arXiv 2021, arXiv:2203.05078. [Google Scholar] [CrossRef]
- Marage, P.; Wallenborn, R. The Solvay Councils and the Birth of Modern Physics, Birkhäuser; Basel-Boston-Berlin: Berlin, Germany, 1999. [Google Scholar]
- Poincaré, H. Die Theorie der Strahlung und der Quanten, Verhandlungen auf einer von E. Solvay einberufenen Zusammenkunft (30. Oktober bis 3. November 1911). In Mit einem Anhang über die Entwicklung der Quantentheorie vom Herbst 1911 bis zum Sommer 1913; University of Michigan Library: Ann Arbor, MI, USA, 2014; p. 365. [Google Scholar]
- Hilfer, R. Mathematical and physical interpretations of fractional derivatives and integrals. In Handbook of Fractional Calculus with Applications, Volume 1: Basic Theory; Kuchubei, A., Luchko, Y., Eds.; de Gruyter: Berlin, Germany, 2019; pp. 47–85. [Google Scholar]
- Einstein, A. Die Theorie der Strahlung und der Quanten, Verhandlungen auf einer von E. Solvay einberufenen Zusammenkunft (30. Oktober bis 3. November 1911). In Mit einem Anhang über die Entwicklung der Quantentheorie vom Herbst 1911 bis zum Sommer 1913; University of Michigan Library: Ann Arbor, MI, USA, 2014; p. 95. [Google Scholar]
- Fedorov, V.E.; Turov, M.M.; Kien, B.T. A Class of Quasilinear Equations with Riemann–Liouville Derivatives and Bounded Operators. Axioms 2022, 11, 96. [Google Scholar] [CrossRef]
- Tudorache, A.; Luca, R. Positive Solutions for a System of Fractional Boundary Value Problems with r-Laplacian Operators, Uncoupled Nonlocal Conditions and Positive Parameters. Axioms 2022, 11, 164. [Google Scholar] [CrossRef]
- Chinchane, V.L.; Nale, A.B.; Panchal, S.K.; Chesneau, C.; Khandagale, A.D. On Fractional Inequalities Using Generalized Proportional Hadamard Fractional Integral Operator. Axioms 2022, 11, 266. [Google Scholar] [CrossRef]
- Tsallis, C. Entropy. Encyclopaedia 2021, 1, 1–44. [Google Scholar]
- Mathai, A. A pathway to matrix-variate gamma and normal densities, Linear Algebra and its Applications. Linear Algebra Its Appl. 2005, 396, 317–328. [Google Scholar] [CrossRef] [Green Version]
- Borges, E.P.; da Costa, B.G. Deformed Mathematical Objects Stemming from the q-Logarithm Function. Axioms 2022, 11, 138. [Google Scholar] [CrossRef]
- Sternheimer, D. Some Multifaceted Aspects of Mathematical Physics, Our Common Denominator with Elliott Lieb. Axioms 2022, 11, 522. [Google Scholar] [CrossRef]
- Kichenassamy, S. Hot Spots in the Weak Detonation Problem and Special Relativity. Axioms 2021, 10, 311. [Google Scholar] [CrossRef]
- Redkina, T.V.; Zakinyan, R.G.; Zakinyan, A.R.; Novikova, O.V. Bäcklund Transformations for Liouville Equations with Exponential Nonlinearity. Axioms 2021, 10, 337. [Google Scholar] [CrossRef]
- Ernst, T. A New q-Hypergeometric Symbolic Calculus in the Spirit of Horn, Borngässer. Axioms 2022, 11, 64. [Google Scholar] [CrossRef]
- Barseghyan, V.; Solodusha, S. Control of String Vibrations by Displacement of One End with the Other End Fixed, Given the Deflection Form at an Intermediate Moment of Time. Axioms 2022, 11, 157. [Google Scholar] [CrossRef]
- Morgulis, A. Waves in a Hyperbolic Predator–Prey System. Axioms 2022, 11, 187. [Google Scholar] [CrossRef]
- Fu, J.; Zhang, L.; Cao, S.; Xiang, C.; Zao, W. A Symplectic Algorithm for Constrained Hamiltonian Systems. Axioms 2022, 11, 217. [Google Scholar] [CrossRef]
- Mercorelli, P. A Theoretical Dynamical Noninteracting Model for General Manipulation Systems Using Axiomatic Geometric Structures. Axioms 2022, 11, 309. [Google Scholar] [CrossRef]
- Steinle, R.; Kleiner, T.; Kumar, P.; Hilfer, R. Existence and Uniqueness of Nonmonotone Solutions in Porous Media Flow. Axioms 2022, 11, 327. [Google Scholar] [CrossRef]
- Apostol, B.F. Near-Field Seismic Motion: Waves, Deformations and Seismic Moment. Axioms 2022, 11, 409. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Haubold, H.J. Henri Poincaré’s Comment on Calculus and Albert Einstein’s Comment on Entropy: Mathematical Physics on the Tenth Anniversary of Axioms. Axioms 2023, 12, 83. https://doi.org/10.3390/axioms12010083
Haubold HJ. Henri Poincaré’s Comment on Calculus and Albert Einstein’s Comment on Entropy: Mathematical Physics on the Tenth Anniversary of Axioms. Axioms. 2023; 12(1):83. https://doi.org/10.3390/axioms12010083
Chicago/Turabian StyleHaubold, Hans J. 2023. "Henri Poincaré’s Comment on Calculus and Albert Einstein’s Comment on Entropy: Mathematical Physics on the Tenth Anniversary of Axioms" Axioms 12, no. 1: 83. https://doi.org/10.3390/axioms12010083
APA StyleHaubold, H. J. (2023). Henri Poincaré’s Comment on Calculus and Albert Einstein’s Comment on Entropy: Mathematical Physics on the Tenth Anniversary of Axioms. Axioms, 12(1), 83. https://doi.org/10.3390/axioms12010083