Boundary-Value Problem for Nonlinear Fractional Differential Equations of Variable Order with Finite Delay via Kuratowski Measure of Noncompactness
Abstract
:1. Introduction and Motivations
2. Preliminaries
- 1.
- is compact;
- 2.
- ;
- 3.
- ;
- 4.
- (;
- 5.
- ;
- 6.
- ;
- 7.
- ;
- 8.
- ;
- 9.
- for any .
- (i)
- the function is continuous for , and
- (ii)
- (i)
- for all
- (ii)
- for all
- (a)
- The interval I is called a generalized interval if it is either an interval or or ∅.
- (b)
- A partition of I is a finite set such that each x in I lies in exactly one of the generalized intervals E in .
- (c)
- A function is called piecewise constant with respect to the partition of I if for any , g is constant on E.
3. Existence Criteria
- (Hyp1)
- For an integer , let the finite sequence of points be given such that , . Denote , and consider the partition of the interval .Let be a piecewise constant function with respect to , represented as follows:
- (Hyp2)
- Let be continuous . exists, such that for any and .
- (1)
- for all
- (2)
- (3)
- has a unique maximum given bywhere .
4. Ulam–Hyers Stability
5. Illustrative Examples
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Baleanu, D.; Diethelm, K.; Scalas, E.; Trujillo, J.J. Fractional Calculus: Models and Numerical Methods, 1st ed.; World Scientific: Singapore, 2012; ISBN 978-981-4355-20-9. [Google Scholar]
- Magin, R. Fractional Calculus in Bioengineering, 1st ed.; Begell House: Redding, CA, USA, 2006; ISBN 978-1567002157. [Google Scholar]
- Kilbas, A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations, 1st ed.; Elsevier: New York, NY, USA, 2006; ISBN 9780444518323. [Google Scholar]
- Petra´s˘, I. Fractional-Order Nonlinear Systems, 1st ed.; Springer: Heidelberg, Germany; Dordrecht, The Netherlands; London, UK; New York, NY, USA, 2011; ISBN 978-3-642-18101-6. [Google Scholar]
- Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivatives: Theory and Applications, 1st ed.; Gordon and Breach: Yverdon, Switzerland, 1993; ISBN 9782881248641. [Google Scholar]
- Stamova, I.M.; Stamov, G.T. Functional and Impulsive Differential Equations of Fractional Order: Qualitative Analysis and Applications, 1st ed.; Taylor & Francis Group: Boca Raton, FL, USA, 2017; ISBN 9781498764834. [Google Scholar]
- Tarasov, V.E. Fractional Dynamics: Application of Fractional Calculus to Dynamics of Particles, Fields and Media, 1st ed.; Springer: Beijing, China, 2015; ISBN 978-3-642-14003-7. [Google Scholar]
- Abdelhadi, M.; Alhazmi, S.E.; Al-Omari, S. On a class of partial differential equations and their solution via local factional integrals and derivatives. Fractal Fract. 2022, 6, 210. [Google Scholar] [CrossRef]
- Al-Sawalha, M.M.; Shah, R.; Nonlaopon, K.; Ababneh, O.Y. Numerical investigation of fractional-order wave-like equation. AIMS Mathem. 2023, 8, 5281–5302. [Google Scholar] [CrossRef]
- Al-Sawalha, M.M.; Shah, R.; Nonlaopon, K.; Khan, I.; Ababneh, O.Y. Fractional evaluation of Kaup–Kupershmidt equation with the exponential-decay kernel. AIMS Mathem. 2022, 8, 3730–3746. [Google Scholar] [CrossRef]
- Al-Sawalha, M.M.; Ababneh, O.Y.; Shah, R.; Khan, I.; Nonlaopon, K. Numerical analysis of fractional-order Whitham–Broer–Kaup equations with non-singular kernel operators. AIMS Mathem. 2022, 8, 2308–2336. [Google Scholar] [CrossRef]
- Qin, H.; Liu, J.; Zuo, X. Controllability problem for fractional integrodifferential evolution systems of mixed type with the measure of noncompactness. J. Inequal. Appl. 2014, 2014, 292. [Google Scholar] [CrossRef] [Green Version]
- Sivasankar, S.; Udhayakumar, R.; Subramanian, V.; AlNemer, G.; Elshenhab, A.M. Existence of Hilfer fractional stochastic differential equations with nonlocal conditions and delay via almost sectorial operators. Mathematics 2022, 10, 4392. [Google Scholar] [CrossRef]
- Almeida, R.; Tavares, D.; Torres, D.F.M. The Variable-Order Fractional Calculus of Variations, 1st ed.; Springer: Cham, Switzerland, 2019; ISBN 978-3-319-94005-2. [Google Scholar]
- Benkerrouche, A.; Souid, M.S.; Stamov, G.; Stamova, I. On the solutions of a quadratic integral equation of the Urysohn type of fractional variable order. Entropy 2022, 24, 886. [Google Scholar] [CrossRef]
- Zhang, S.; Hu, L. The existence of solutions and generalized Lyapunov-type inequalities to boundary-value problems of differential equations of variable order. AIMS Math. 2020, 5, 2923–2943. [Google Scholar] [CrossRef]
- Zhang, S.; Sun, S.; Hu, L. Approximate solutions to initial value problem for differential equation of variable order. J. Fract. Calc. Appl. 2018, 9, 93–112. [Google Scholar]
- Odzijewicz, T.; Malinowska, A.B.; Torres, D.F.M. Fractional variational calculus of variable order. In Advances in Harmonic Analysis and Operator Theory. Operator Theory: Advances and Applications, 1st ed.; Almeida, A., Castro, L., Speck, F.O., Eds.; Birkhäuser: Basel, Switzerland, 2013; Volume 229, pp. 291–301. [Google Scholar]
- Patnaik, S.; Hollkamp, J.P.; Semperlotti, F. Applications of variable-order fractional operators: A review. Proc. R. Soc. A 2020, 476, 20190498. [Google Scholar] [CrossRef] [Green Version]
- Sun, H.G.; Chen, W.; Chen, Y.Q. Variable-order fractional differential operators in anomalous diffusion modeling. Physica A 2009, 388, 4586–4592. [Google Scholar] [CrossRef]
- Lu, X.; Li, H.; Chen, N. An indicator for the electrode aging of lithium-ion batteries using a fractional variable order model. Electrochim. Acta 2019, 299, 378–387. [Google Scholar] [CrossRef]
- Sweilam, N.H.; AL-Mekhlafi, S.M.; Alshomrani, A.S.; Baleanu, D. Comparative study for optimal control nonlinear variable-order fractional tumor model. Chaos Solitons Fract. 2020, 136, 1–10. [Google Scholar] [CrossRef]
- Benkerrouche, A.; Baleanu, D.; Souid, M.S.; Hakem, A.; Inc, M. Boundary-value problem for nonlinear fractional differential equations of variable order via Kuratowski MNC technique. Adv. Differ. Equ. 2021, 365, 1–19. [Google Scholar] [CrossRef]
- Benkerrouche, A.; Souid, M.S.; Etemad, S.; Hakem, A.; Agarwal, P.; Rezapour, S.; Ntouyas, S.K.; Tariboon, J. Qualitative study on solutions of a Hadamard variable order boundary problem via the Ulam–Hyers-Rassias stability. Fractal Fract. 2021, 5, 108. [Google Scholar] [CrossRef]
- Benkerrouche, A.; Souid, M.S.; Karapinar, E.; Hakem, A. On the boundary-value problems of Hadamard fractional differential equations of variable order. Math. Meth. Appl. Sci. 2022. [Google Scholar] [CrossRef]
- Benkerrouche, A.; Souid, M.S.; Sitthithakerngkiet, K.; Hakem, A. Implicit nonlinear fractional differential equations of variable order. Bound. Value Probl. 2021, 2021, 64. [Google Scholar] [CrossRef]
- Refice, A.; Souid, M.S.; Stamova, I. On the boundary-value problems of Hadamard fractional differential equations of variable order via Kuratowski MNC technique. Mathematics 2021, 9, 1134. [Google Scholar] [CrossRef]
- Ali, K.K.; Mohamed, E.M.H.; El-Salam, M.A.A.; Nisar, K.S.; Khashan, M.M.; Zakarya, M. A collocation approach for multiterm variable-order fractional delay-differential equations using shifted Chebyshev polynomials. Alex. Eng. J. 2022, 61, 3511–3526. [Google Scholar] [CrossRef]
- Boyadzhiev, D.; Kiskinov, H.; Veselinova, M.; Zahariev, A. Stability analysis of linear distributed order fractional systems with distributed delays. Fract. Calc. Appl. Anal. 2017, 20, 914–935. [Google Scholar] [CrossRef]
- Soli´s–Pe´rez, J.E.; Go´mez-Aguilar, J.F. Variable-order fractal-fractional time delay equations with power, exponential and Mittag–Leffler laws and their numerical solutions. Eng. Comput. 2022, 38, 555–577. [Google Scholar] [CrossRef]
- Zu´n˜iga–Aguilar, C.J.; Go´mez–Aguilar, J.F.; Escobar–Jime´nez, R.F.; Romero–Ugalde, H.M. A novel method to solve variable-order fractional delay differential equations based in lagrange interpolations. Chaos Solitons Fract. 2019, 126, 266–282. [Google Scholar] [CrossRef]
- Bockstal, K.; Zaky, M.A.; Hendy, A.S. On the existence and uniqueness of solutions to a nonlinear variable order time-fractional reaction–diffusion equation with delay. Commun. Nonlinear Sci. Numer. Simul. 2022, 115, 106755. [Google Scholar] [CrossRef]
- Benchohra, M.; Henderson, J.; Ntouyas, S.K.; Ouahab, A. Existence results for fractional order functional differential equations with infinite delay. J. Math. Anal. Appl. 2008, 338, 1340–1350. [Google Scholar] [CrossRef]
- Abbas, S. Existence of solutions to fractional order ordinary and delay differential equations and applications. Electron. J. Differ. Equ. 2011, 2011, 1–11. [Google Scholar]
- Borisut, P.; Auipa-arch, C. Fractional-order delay differential equation with separated conditions. Thai J. Math. 2021, 19, 842–853. [Google Scholar]
- Jalilian, Y.; Jalilian, R. Existence of solution for delay fractional differential equations. Mediterr. J. Math. 2013, 10, 1731–1747. [Google Scholar] [CrossRef]
- Jiang, D.; Bai, C. Existence results for coupled implicit ψ-Riemann–Liouville fractional differential equations with nonlocal conditions. Axioms 2022, 11, 103. [Google Scholar] [CrossRef]
- Li, M.; Wang, J.R. Representation of solution of a Riemann–Liouville fractional differential equation with pure delay. Appl. Math. Lett. 2018, 85, 118–124. [Google Scholar] [CrossRef]
- Samko, S. Fractional integration and differentiation of variable order: An overview. Nonlinear Dyn. 2013, 71, 653–662. [Google Scholar] [CrossRef]
- Valerio, D.; Costa, J.S. Variable-order fractional derivatives and their numerical approximations. Signal Process. 2011, 91, 470–483. [Google Scholar] [CrossRef]
- Zhang, H.; Li, S.; Hu, L. The existence and uniqueness result of solutions to initial value problems of nonlinear diffusion equations involving with the conformable variable derivative. Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. 2019, 113, 1601–1623. [Google Scholar] [CrossRef]
- Zhang, S. Existence of solutions for two-point boundary-value problems with singular differential equations of variable order. Electron. J. Differ. Equ. 2013, 2013, 1–16. [Google Scholar]
- Banas, J. On measures of noncompactness in Banach spaces. Comment. Math. Univ. Carol. 1980, 21, 131–143. [Google Scholar]
- Akhmerov, R.R.; Kamenskii, M.I.; Patapov, A.S.; Rodkina, A.E.; Sadovskii, B.N. Measures of Noncompactness and Condensing Operators, 1st ed.; Birkhauser: Basel, Switzerland, 1992; ISBN 978-3-0348-5727-7. [Google Scholar]
- Guo, D.; Lakshmikantham, V.; Liu, X. Nonlinear Integral Equations in Abstract Spaces, 1st ed.; Springer: New York, NY, USA, 1996; ISBN 978-1-4613-1281-9. [Google Scholar]
- Benchohra, M.; Lazreg, J.E. Existence and Ulam stability for nonlinear implicit fractional differential equations with Hadamard derivative. Stud. Univ. Babes-Bolyai Math. 2017, 62, 27–38. [Google Scholar] [CrossRef]
- Rus, I.A. Ulam stabilities of ordinary differential equations in a Banach space. Carpathian J. Math. 2010, 26, 103–107. [Google Scholar]
- An, J.; Chen, P. Uniqueness of solutions to initial value problem of fractional differential equations of variable-order. Dyn. Syst. Appl. 2019, 28, 607–623. [Google Scholar]
- Benchohra, M.; Bouriah, S.; Lazreg, J.E.; Nieto, J.J. Nonlinear implicit Hadamard’s fractional differential equations with delay in Banach space. Acta Univ. Palack. Olomuc. Fac. Rerum Natur. Math. 2016, 55, 15–26. [Google Scholar]
- Benkerrouche, A.; Souid, M.S.; Stamov, G.; Stamova, I. Multiterm impulsive Caputo–Hadamard type differential equations of fractional variable order. Axioms 2022, 11, 634. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Telli, B.; Souid, M.S.; Stamova, I. Boundary-Value Problem for Nonlinear Fractional Differential Equations of Variable Order with Finite Delay via Kuratowski Measure of Noncompactness. Axioms 2023, 12, 80. https://doi.org/10.3390/axioms12010080
Telli B, Souid MS, Stamova I. Boundary-Value Problem for Nonlinear Fractional Differential Equations of Variable Order with Finite Delay via Kuratowski Measure of Noncompactness. Axioms. 2023; 12(1):80. https://doi.org/10.3390/axioms12010080
Chicago/Turabian StyleTelli, Benoumran, Mohammed Said Souid, and Ivanka Stamova. 2023. "Boundary-Value Problem for Nonlinear Fractional Differential Equations of Variable Order with Finite Delay via Kuratowski Measure of Noncompactness" Axioms 12, no. 1: 80. https://doi.org/10.3390/axioms12010080
APA StyleTelli, B., Souid, M. S., & Stamova, I. (2023). Boundary-Value Problem for Nonlinear Fractional Differential Equations of Variable Order with Finite Delay via Kuratowski Measure of Noncompactness. Axioms, 12(1), 80. https://doi.org/10.3390/axioms12010080