Goodness-of-Fit Test for the Bivariate Hermite Distribution
Abstract
:1. Introduction
2. Preliminaries
3. The Test Statistic and Its Asymptotic Null Distribution
4. The Bootstrap Estimator
- (1)
- , as , where is an open neighborhood of θ.
- (2)
- is continuous as a function of ϑ at , and is finite .
5. Numerical Results and Discussion
5.1. Simulated Data
5.2. The Power of a Hypothesis Test
- bivariate binomial distribution , where , , and ,
- bivariate Poisson distribution , where , ,
- bivariate logarithmic series distribution , where ,
- bivariate negative binomial distribution , where and ,
- bivariate Neyman type A distribution , where ,
- bivariate Poisson distribution mixtures of the form , where , denoted by .
5.3. Real Data Set
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ebner, B.; Henze, N. Tests for multivariate normality-a critical review with emphasis on weighted L2-statistics. TEST 2020, 29, 845–892. [Google Scholar] [CrossRef]
- Górecki, T.; Horváth, L.; Kokoszka, P. Tests of Normality of Functional Data. Int. Stat. Rev. 2020, 88, 677–697. [Google Scholar] [CrossRef]
- Puig, P.; Weiβ, C.H. Some goodness-of-fit tests for the Poisson distribution with applications in biodosimetry. Comput. Stat. Data Anal. 2020, 144, 106878. [Google Scholar] [CrossRef]
- Arnastauskaitè, J.; Ruzgas, T.; Bražènas, M. A New Goodness of Fit Test for Multivariate Normality and Comparative Simulation Study. Mathematics 2021, 9, 3003. [Google Scholar]
- Dörr, P.; Ebner, B.; Henze, N. A new test of multivariate normality by a double estimation in a characterizing PDE. Metrika 2021, 84, 401–427. [Google Scholar]
- Kolkiewicz, A.; Rice, G.; Xie, Y. Projection pursuit based tests of normality with functional data. J. Stat. Plan. Inference 2021, 211, 326–339. [Google Scholar] [CrossRef]
- Milonas, D.; Ruzgas, T.; Venclovas, Z.; Jievaltas, M.; Joniau, S. The significance of prostate specific antigen persistence in prostate cancer risk groups on long-term oncological outcomes. Cancers 2021, 13, 2453. [Google Scholar] [CrossRef] [PubMed]
- Di Noia, A.; Barabesi, L.; Marcheselli, M.; Pisani, C.; Pratelli, L. Goodness-of-fit test for count distributions with finite second moment. J. Nonparametric Stat. 2022. [Google Scholar] [CrossRef]
- Erlemann, R.; Lindqvist, B.H. Conditional Goodness-of-Fit Tests for Discrete Distributions. J. Stat. Theory Pract. 2022. [Google Scholar] [CrossRef]
- McKendrick, A.G. Applications of Mathematics to Medical Problems? Proc. Edinb. Math. Soc. 1926, 44, 98–130. [Google Scholar] [CrossRef] [Green Version]
- Cresswell, W.L.; Froggatt, P. The Causation of Bus Driver Accidents; Oxford University Press: Oxford, UK, 1963; p. 316. [Google Scholar]
- Meintanis, S.; Bassiakos, Y. Goodness-of-fit tests for additively closed count models with an application to the generalized Hermite distribution. Sankhya 2005, 67, 538–552. [Google Scholar]
- Novoa-Muñoz, F. Goodness-of-fit tests for the bivariate Poisson distribution. Commun. Stat. Simul. Comput. 2019. [Google Scholar] [CrossRef] [Green Version]
- Novoa-Muñoz, F.; Jiménez-Gamero, M.D. Testing for the bivariate Poisson distribution. Metrika 2013, 77, 771–793. [Google Scholar] [CrossRef]
- Johnson, N.L.; Kemp, A.W.; Kotz, S. Univariate Discrete Distributions, 3rd ed.; John Wiley & Sons, Inc.: New York, NY, USA, 2005. [Google Scholar]
- Kocherlakota, S.; Kocherlakota, K. Bivariate Discrete Distributions; John Wiley & Sons: Hoboken, NJ, USA, 1992. [Google Scholar]
- Papageorgiou, H.; Kemp, C.D.; Loukas, S. Some methods of estimation for the bivariate Hermite distribution. Biometrika 1983, 70, 479–484. [Google Scholar] [CrossRef]
- Kemp, C.D.; Kemp, A.W. Rapid estimation for discrete distributions. Statistician 1988, 37, 243–255. [Google Scholar] [CrossRef]
- Johnson, N.L.; Kotz, S.; Balakrishnan, N. Discrete Multivariate Distributions; Wiley: New York, NY, USA, 1997. [Google Scholar]
- Kocherlakota, S. On the compounded bivariate Poisson distribution: A unified approach. Ann. Inst. Stat. Math. 1988, 40, 61–76. [Google Scholar] [CrossRef]
- Papageorgiou, H.; Loukas, S. Conditional even point estimation for bivariate discrete distributions. Commun. Stat. Theory Methods 1988, 17, 3403–3412. [Google Scholar] [CrossRef]
- Serfling, R.J. Approximation Theorems of Mathematical Statistics; Wiley: New York, NY, USA, 1980. [Google Scholar]
- Kundu, S.; Majumdar, S.; Mukherjee, K. Central limits theorems revisited. Stat. Probab. Lett. 2000, 47, 265–275. [Google Scholar] [CrossRef]
- Van der Vaart, J.A.; Wellner, J.A. Weak Convergence and Empirical Processes; Springer: New York, NY, USA, 1996. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. 2021. Available online: https://www.R-project.org/ (accessed on 1 July 2019).
- Kemp, C.D.; Papageorgiou, H. Bivariate Hermite distributions. Sankhya 1982, 44, 269–280. [Google Scholar]
(1.0, 0.8, 0.10, 0.20, 0.00) | 0.012 | 0.053 | 0.029 | 0.069 | 0.037 | 0.081 |
(1.0, 0.8, 0.25, 0.25, 0.00) | 0.027 | 0.067 | 0.037 | 0.064 | 0.043 | 0.094 |
(1.0, 0.8, 0.50, 0.20, 0.00) | 0.016 | 0.062 | 0.046 | 0.073 | 0.047 | 0.087 |
(1.0, 0.8, 0.50, 0.50, 0.00) | 0.025 | 0.063 | 0.042 | 0.076 | 0.044 | 0.091 |
(1.5, 1.0, 0.50, 0.50, 0.00) | 0.010 | 0.064 | 0.035 | 0.078 | 0.042 | 0.089 |
(1.5, 1.0, 0.50, 0.75, 0.00) | 0.010 | 0.065 | 0.036 | 0.084 | 0.041 | 0.084 |
(1.5, 1.0, 0.75, 0.25, 0.00) | 0.017 | 0.071 | 0.038 | 0.087 | 0.043 | 0.088 |
(1.5, 1.0, 1.00, 0.25, 0.00) | 0.027 | 0.076 | 0.039 | 0.090 | 0.042 | 0.092 |
(2.0, 1.0, 0.25, 0.75, 0.00) | 0.017 | 0.067 | 0.038 | 0.082 | 0.047 | 0.089 |
(2.0, 1.0, 0.50, 0.25, 0.00) | 0.011 | 0.067 | 0.037 | 0.088 | 0.045 | 0.091 |
(2.0, 1.0, 0.75, 0.25, 0.00) | 0.029 | 0.070 | 0.035 | 0.087 | 0.043 | 0.089 |
(1.0, 0.8, 0.10, 0.20, 0.00) | 0.010 | 0.039 | 0.025 | 0.073 | 0.043 | 0.088 |
(1.0, 0.8, 0.25, 0.25, 0.00) | 0.025 | 0.073 | 0.037 | 0.088 | 0.041 | 0.104 |
(1.0, 0.8,0.50, 0.20, 0.00) | 0.027 | 0.072 | 0.041 | 0.083 | 0.045 | 0.086 |
(1.0, 0.8, 0.50, 0.50, 0.00) | 0.035 | 0.053 | 0.042 | 0.072 | 0.045 | 0.101 |
(1.5, 1.0, 0.50, 0.50, 0.00) | 0.011 | 0.064 | 0.031 | 0.080 | 0.038 | 0.085 |
(1.5, 1.0, 0.50, 0.75, 0.00) | 0.019 | 0.065 | 0.034 | 0.078 | 0.039 | 0.080 |
(1.5, 1.0, 0.75, 0.25, 0.00) | 0.025 | 0.081 | 0.038 | 0.085 | 0.042 | 0.084 |
(1.5, 1.0, 1.00, 0.25, 0.00) | 0.037 | 0.074 | 0.035 | 0.085 | 0.040 | 0.086 |
(2.0, 1.0, 0.25, 0.75, 0.00) | 0.027 | 0.071 | 0.034 | 0.082 | 0.047 | 0.089 |
(2.0, 1.0, 0.50, 0.25, 0.00) | 0.011 | 0.077 | 0.031 | 0.084 | 0.044 | 0.086 |
(2.0, 1.0, 0.75, 0.25, 0.00) | 0.019 | 0.080 | 0.035 | 0.085 | 0.044 | 0.087 |
(1.0, 0.8, 0.10, 0.20, 0.00) | 0.014 | 0.044 | 0.029 | 0.067 | 0.043 | 0.088 |
(1.0, 0.8, 0.25, 0.25, 0.00) | 0.028 | 0.068 | 0.039 | 0.079 | 0.042 | 0.084 |
(1.0, 0.8, 0.50, 0.20, 0.00) | 0.019 | 0.063 | 0.042 | 0.083 | 0.057 | 0.092 |
(1.0, 0.8, 0.50, 0.50, 0.00) | 0.029 | 0.063 | 0.045 | 0.075 | 0.054 | 0.089 |
(1.5, 1.0, 0.50, 0.50, 0.00) | 0.011 | 0.066 | 0.039 | 0.079 | 0.042 | 0.089 |
(1.5, 1.0, 0.50, 0.75, 0.00) | 0.013 | 0.070 | 0.043 | 0.082 | 0.043 | 0.087 |
(1.5, 1.0, 0.75, 0.25, 0.00) | 0.017 | 0.081 | 0.042 | 0.089 | 0.043 | 0.092 |
(1.5, 1.0, 1.00, 0.25, 0.00) | 0.037 | 0.086 | 0.045 | 0.091 | 0.045 | 0.093 |
(2.0, 1.0, 0.25, 0.75, 0.00) | 0.047 | 0.077 | 0.048 | 0.084 | 0.047 | 0.089 |
(2.0, 1.0, 0.50, 0.25, 0.00) | 0.014 | 0.077 | 0.037 | 0.089 | 0.043 | 0.093 |
(2.0, 1.0, 0.75, 0.25, 0.00) | 0.027 | 0.080 | 0.041 | 0.097 | 0.044 | 0.096 |
(1.0, 0.8, 0.10, 0.20, 0.00) | 0.016 | 0.073 | 0.024 | 0.086 | 0.048 | 0.092 |
(1.0, 0.8, 0.25, 0.25, 0.00) | 0.032 | 0.058 | 0.037 | 0.088 | 0.049 | 0.091 |
(1.0, 0.8, 0.50, 0.20, 0.00) | 0.024 | 0.064 | 0.043 | 0.085 | 0.048 | 0.089 |
(1.0, 0.8, 0.50, 0.50, 0.00) | 0.033 | 0.072 | 0.043 | 0.086 | 0.049 | 0.093 |
(1.5, 1.0, 0.50, 0.50, 0.00) | 0.030 | 0.072 | 0.038 | 0.088 | 0.046 | 0.090 |
(1.5, 1.0, 0.50, 0.75, 0.00) | 0.033 | 0.071 | 0.042 | 0.084 | 0.047 | 0.098 |
(1.5, 1.0, 0.75, 0.25, 0.00) | 0.036 | 0.097 | 0.039 | 0.097 | 0.049 | 0.099 |
(1.5, 1.0, 1.00, 0.25, 0.00) | 0.039 | 0.088 | 0.046 | 0.090 | 0.049 | 0.093 |
(2.0, 1.0, 0.25, 0.75, 0.00) | 0.031 | 0.087 | 0.044 | 0.092 | 0.048 | 0.099 |
(2.0, 1.0, 0.50, 0.25, 0.00) | 0.035 | 0.068 | 0.039 | 0.081 | 0.047 | 0.093 |
(2.0, 1.0, 0.75, 0.25, 0.00) | 0.037 | 0.080 | 0.045 | 0.088 | 0.049 | 0.096 |
(1.0, 0.8, 0.10, 0.20, 0.00) | 0.014 | 0.037 | 0.032 | 0.075 | 0.051 | 0.093 |
(1.0, 0.8, 0.25, 0.25, 0.00) | 0.023 | 0.074 | 0.053 | 0.090 | 0.060 | 0.113 |
(1.0, 0.8, 0.50, 0.20, 0.00) | 0.036 | 0.101 | 0.062 | 0.110 | 0.064 | 0.117 |
(1.0, 0.8, 0.50, 0.50, 0.00) | 0.023 | 0.080 | 0.042 | 0.107 | 0.063 | 0.109 |
(1.5, 1.0, 0.50, 0.50, 0.00) | 0.022 | 0.081 | 0.037 | 0.111 | 0.046 | 0.108 |
(1.5, 1.0, 0.50, 0.75, 0.00) | 0.039 | 0.095 | 0.048 | 0.108 | 0.056 | 0.108 |
(1.5, 1.0, 0.75, 0.25, 0.00) | 0.034 | 0.108 | 0.048 | 0.107 | 0.054 | 0.108 |
(1.5, 1.0, 1.00, 0.25, 0.00) | 0.037 | 0.107 | 0.059 | 0.109 | 0.054 | 0.107 |
(2.0, 1.0, 0.25, 0.75, 0.00) | 0.048 | 0.106 | 0.056 | 0.108 | 0.054 | 0.106 |
(2.0, 1.0, 0.50, 0.25, 0.00) | 0.025 | 0.107 | 0.047 | 0.108 | 0.045 | 0.108 |
(2.0, 1.0, 0.75, 0.25, 0.00) | 0.043 | 0.107 | 0.045 | 0.107 | 0.043 | 0.106 |
(1.0, 0.8, 0.10, 0.20, 0.00) | 0.015 | 0.040 | 0.032 | 0.062 | 0.042 | 0.081 |
(1.0, 0.8, 0.25, 0.25, 0.00) | 0.034 | 0.076 | 0.045 | 0.101 | 0.048 | 0.104 |
(1.0, 0.8, 0.50, 0.20, 0.00) | 0.028 | 0.084 | 0.048 | 0.073 | 0.053 | 0.089 |
(1.0, 0.8, 0.50, 0.50, 0.00) | 0.028 | 0.069 | 0.045 | 0.079 | 0.054 | 0.098 |
(1.5, 1.0, 0.50, 0.50, 0.00) | 0.019 | 0.071 | 0.035 | 0.078 | 0.042 | 0.099 |
(1.5, 1.0, 0.50, 0.75, 0.00) | 0.044 | 0.104 | 0.048 | 0.098 | 0.056 | 0.104 |
(1.5, 1.0, 0.75, 0.25, 0.00) | 0.027 | 0.107 | 0.038 | 0.105 | 0.046 | 0.103 |
(1.5, 1.0, 1.00, 0.25, 0.00) | 0.037 | 0.117 | 0.043 | 0.112 | 0.060 | 0.107 |
(2.0, 1.0, 0.25, 0.75, 0.00) | 0.037 | 0.112 | 0.039 | 0.108 | 0.054 | 0.108 |
(2.0, 1.0, 0.50, 0.25, 0.00) | 0.026 | 0.077 | 0.034 | 0.109 | 0.055 | 0.109 |
(2.0, 1.0, 0.75, 0.25, 0.00) | 0.034 | 0.116 | 0.045 | 0.107 | 0.056 | 0.105 |
(1.0, 0.8, 0.10, 0.20, 0.00) | 0.017 | 0.035 | 0.032 | 0.065 | 0.050 | 0.089 |
(1.0, 0.8, 0.25, 0.25, 0.00) | 0.027 | 0.077 | 0.034 | 0.081 | 0.043 | 0.084 |
(1.0, 0.8, 0.50, 0.20, 0.00) | 0.030 | 0.086 | 0.042 | 0.087 | 0.048 | 0.104 |
(1.0, 0.8, 0.50, 0.50, 0.00) | 0.013 | 0.069 | 0.030 | 0.076 | 0.045 | 0.105 |
(1.5, 1.0, 0.50, 0.50, 0.00) | 0.016 | 0.063 | 0.035 | 0.078 | 0.046 | 0.087 |
(1.5, 1.0, 0.50, 0.75, 0.00) | 0.019 | 0.085 | 0.061 | 0.089 | 0.054 | 0.094 |
(1.5, 1.0, 0.75, 0.25, 0.00) | 0.031 | 0.071 | 0.053 | 0.102 | 0.047 | 0.098 |
(1.5, 1.0, 1.00, 0.25, 0.00) | 0.037 | 0.086 | 0.049 | 0.104 | 0.052 | 0.102 |
(2.0, 1.0, 0.25, 0.75, 0.00) | 0.015 | 0.087 | 0.057 | 0.098 | 0.055 | 0.101 |
(2.0, 1.0, 0.75, 0.25, 0.00) | 0.040 | 0.097 | 0.054 | 0.102 | 0.053 | 0.102 |
Alternative | |||||
---|---|---|---|---|---|
87 85 93 95 94 | 81 82 84 89 86 | 89 88 98 100 100 | 81 80 83 87 85 | 85 86 92 95 93 | |
85 84 87 87 86 | 76 77 75 77 76 | 89 91 92 93 92 | 77 72 73 75 77 | 82 85 83 87 87 | |
94 91 90 94 90 | 85 85 86 86 83 | 98 100 100 100 98 | 86 84 84 83 83 | 95 90 90 93 91 | |
93 92 94 92 91 | 87 86 88 84 84 | 96 95 100 97 96 | 85 85 89 85 83 | 92 92 93 92 91 | |
93 95 93 94 93 | 86 87 85 85 86 | 98 100 97 98 96 | 85 85 86 86 86 | 92 95 93 94 94 | |
76 77 78 78 76 | 70 71 71 70 71 | 82 84 84 85 83 | 72 71 71 70 70 | 77 76 76 77 78 |
X | ||||||||||
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | Total | ||
0 | 117 | 96 | 55 | 19 | 2 | 2 | 0 | 0 | 291 | |
1 | 61 | 69 | 47 | 27 | 8 | 5 | 1 | 0 | 218 | |
2 | 34 | 42 | 31 | 13 | 7 | 2 | 3 | 0 | 132 | |
Y | 3 | 7 | 15 | 17 | 7 | 3 | 1 | 0 | 0 | 49 |
4 | 3 | 3 | 1 | 1 | 2 | 1 | 1 | 1 | 13 | |
5 | 2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | |
6 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | |
7 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | |
Total | 224 | 226 | 150 | 68 | 23 | 11 | 5 | 1 | 708 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
González-Albornoz, P.; Novoa-Muñoz, F. Goodness-of-Fit Test for the Bivariate Hermite Distribution. Axioms 2023, 12, 7. https://doi.org/10.3390/axioms12010007
González-Albornoz P, Novoa-Muñoz F. Goodness-of-Fit Test for the Bivariate Hermite Distribution. Axioms. 2023; 12(1):7. https://doi.org/10.3390/axioms12010007
Chicago/Turabian StyleGonzález-Albornoz, Pablo, and Francisco Novoa-Muñoz. 2023. "Goodness-of-Fit Test for the Bivariate Hermite Distribution" Axioms 12, no. 1: 7. https://doi.org/10.3390/axioms12010007
APA StyleGonzález-Albornoz, P., & Novoa-Muñoz, F. (2023). Goodness-of-Fit Test for the Bivariate Hermite Distribution. Axioms, 12(1), 7. https://doi.org/10.3390/axioms12010007