Hyers Stability in Generalized Intuitionistic P-Pseudo Fuzzy 2-Normed Spaces
Abstract
:1. Introduction
- (1)
- for every ;
- (2)
- The sequence , where is a fixed point of ;
- (3)
- is the unique fixed point of in the set .
- (4)
- for every .
- (FT1)
- if .
- (FT2)
- if and only if are linearly dependent for all .
- (FT3)
- is invariant under any permutation of .
- (FT4)
- , for all and .
- (FT5)
- for all .
- (FT6)
- is a non-decreasing function on and
- (FN1)
- , for every .
- (FN2)
- if and only if are linearly dependent for all .
- (FN3)
- is invariant under any permutation of .
- (FN4)
- for every .
- (FN5)
- for all
- (FN6)
- is a non-increasing function and
2. Main Results
2.1. Generalized Intuitionistic P-Pseudo Fuzzy 2-Normed Space
- (P1)
- for all
- (P2)
- if and only if are linearly dependent for all .
- (P3)
- for all and .
- (P4)
- is invariant under any permutation of .
- (P5)
- for all .
- (P6)
- is continuous and
2.2. Stability of m-Mapping in Generalized Intuitionistic P-Pseudo Fuzzy 2-Normed Space
- (1)
- It is obvious that d has a symmetry property, i.e., .
- (2)
- Using Definition (11), we haveThe right side of the above definition is satisfied for every then .
- (3)
- Let , using the definition of d, the following inequality holds, for every constant u and .
- (4)
3. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ulam, S.M. Problems in Modern Mathematics; Courier Corporation: North Chelmsford, MA, USA, 2004. [Google Scholar]
- Hyers, H.D. On the stability of the linear functional equation. Proc. Natl. Acad. Sci. USA 1941, 27, 222–224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rassias, T.M. On the stability of the linear mapping in Banach spaces. Proc. Am. Math. Soc. 1978, 72, 297–300. [Google Scholar] [CrossRef]
- Gordji, M.E.; Alizadeh, Z.; Khodaei, H.; Park, C. On approximate homomorphisms: A fixed point approach. Math. Sci. 2012, 6, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Mirmostafaee, A.K.; Mirzavaziri, M.; Moslehian, M.S. Fuzzy stability of the Jensen functional equation. Fuzzy Sets Syst. 2008, 159, 730–738. [Google Scholar] [CrossRef]
- Mirmostafaee, A.K.; Moslehian, M.S. Fuzzy versions of Hyers-Ulam-Rassias theorem. Fuzzy Sets Syst. 2008, 159, 720–729. [Google Scholar] [CrossRef]
- Mosadegh, S.M.S.; Movahednia, E. Stability of preserving lattice cubic functional equation in Menger probabilistic normed Riesz spaces. J. Fixed Point Theory Appl. 2018, 20, 34. [Google Scholar] [CrossRef]
- Movahednia, E.; Mursaleen, M. Stability of a generalized quadratic functional equation in intuitionistic fuzzy 2-normed space. Filomat 2016, 30, 449–457. [Google Scholar] [CrossRef]
- Movahednia, E.; Cho, Y.; Park, C.; Paokanta, S. On approximate solution of lattice functional equations in Banach f-algebras. AIMS Math. 2020, 5, 5458–5469. [Google Scholar] [CrossRef]
- Jung, S.M. Hyers-Ulam-Rassias stability of Jensen’s equation and its application. Proc. Am. Math. Soc. 1998, 126, 3137–3143. [Google Scholar] [CrossRef] [Green Version]
- Park, C.; Gorgji, M.E.; Saadati, R. Random homomorphisms and random derivations in random normed algebras via fixed point method. J. Inequal. Appl. 2012, 194, 1–13. [Google Scholar] [CrossRef]
- Sahoo, P.K.; Palaniappan, K. Introduction to Functional Equations; CRC Press: Boca Raton, FL, USA, 2011. [Google Scholar]
- Salehi, N.; Modarres, S.M.S. A fixed point method for stability of involutions on multi-Banach algebra. J. Fixed Point Theory Appl. 2020, 22, 20. [Google Scholar] [CrossRef]
- Zadeh, L.A. Fuzzy sets. Inf. Control 1965, 8, 338–353. [Google Scholar] [CrossRef] [Green Version]
- Kramosil, I.; Michalek, J. Fuzzy metric and statistical metric spaces. Kybernetika 1975, 11, 326–334. [Google Scholar]
- Atanassov, K.T. Intuitionistic fuzzy sets. Fuzzy Sets Syst. 1986, 20, 87–96. [Google Scholar] [CrossRef]
- Saadati, R.; Park, J.H. On the intuitionistic fuzzy topological spaces. Chaos Solitons Fractals 2006, 27, 331–344. [Google Scholar] [CrossRef] [Green Version]
- Diaz, J.; Margolis, B. A fixed point theorem of the alternative for contractions on a generalized complete metric space. Bull. Amer. Math. Soc. 1968, 74, 305–309. [Google Scholar] [CrossRef] [Green Version]
- Samanta, T.K.; Jebril, I.H. Finite Dimensional Intuitionistic Fuzzy Normed Linear Space. Int. J. Open Probl. Compt. Math. 2009, 4, 574–591. [Google Scholar]
- Mursaleen, M.; Lohani, Q.M.D. Intuitionistic fuzzy 2-normed space and some related concepts. Chaos Solitons Fractals 2009, 42, 224–234. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Movahednia, E.; De la Sen, M. Hyers Stability in Generalized Intuitionistic P-Pseudo Fuzzy 2-Normed Spaces. Axioms 2023, 12, 28. https://doi.org/10.3390/axioms12010028
Movahednia E, De la Sen M. Hyers Stability in Generalized Intuitionistic P-Pseudo Fuzzy 2-Normed Spaces. Axioms. 2023; 12(1):28. https://doi.org/10.3390/axioms12010028
Chicago/Turabian StyleMovahednia, Ehsan, and Manuel De la Sen. 2023. "Hyers Stability in Generalized Intuitionistic P-Pseudo Fuzzy 2-Normed Spaces" Axioms 12, no. 1: 28. https://doi.org/10.3390/axioms12010028
APA StyleMovahednia, E., & De la Sen, M. (2023). Hyers Stability in Generalized Intuitionistic P-Pseudo Fuzzy 2-Normed Spaces. Axioms, 12(1), 28. https://doi.org/10.3390/axioms12010028