Pitch Control of Wind Turbine Blades Using Fractional Particle Swarm Optimization
Abstract
:1. Introduction
2. Wind Turbine (WT) Model
2.1. The Aerodynamic Subsystem
2.2. The Drivetrain Subsystem
2.3. The Generator Subsystem
3. The Optimal Controller Design
3.1. State Feedback
3.2. Reference of Rotor Angular Velocity
3.3. Particle Swarm Optimization (PSO) and Controller Structure
3.4. Takagi–Sugeno–Kang (TSK) Controller Structure
4. Simulations Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rahimi, M.; Parniani, M. Dynamic behavior and transient stability analysis of fixed speed wind turbines. Renew. Energy 2009, 34, 2613–2624. [Google Scholar] [CrossRef]
- Sumper, A.; Gomis-Bellmunt, O.; Sudria-Andreu, A.; Villafafila-Robles, R.; Rull-Duran, J. Response of Fixed Speed Wind Turbines to System Frequency Disturbances. IEEE Trans. Power Syst. 2009, 24, 181–192. [Google Scholar] [CrossRef]
- Barambones, O.; Cortajarena, J.A.; Calvo, I.; de Durana, J.M.G.; Alkorta, P.; Karami-Mollaee, A. Variable speed wind turbine control scheme using a robust wind torque estimation. Renew. Energy 2019, 133, 354–366. [Google Scholar] [CrossRef]
- Poultangari, I.; Shahnazi, R.; Sheikhan, M. RBF neural network based PI pitch controller for a class of 5-MW wind turbines using particle swarm optimization algorithm. ISA Trans. 2012, 51, 641–648. [Google Scholar] [CrossRef]
- Karami-Mollaee, A. A new structure of sliding mode observer in dynamic sliding mode control of generator torque wind turbine. J. Mech. Sci. Technol. 2021, 35, 5681–5687. [Google Scholar] [CrossRef]
- Camblong, H. Digital robust control of a variable speed pitch regulated wind turbine for above rated wind speeds. Control Eng. Pr. 2008, 16, 946–958. [Google Scholar] [CrossRef]
- Gao, R.; Gao, Z. Pitch control for wind turbine systems using optimization, estimation and compensation. Renew. Energy 2016, 91, 501–515. [Google Scholar] [CrossRef]
- Yuan, Y.; Chen, X.; Tang, J. Multivariable robust blade pitch control design to reject periodic loads on wind turbines. Renew. Energy 2020, 146, 329–341. [Google Scholar] [CrossRef]
- Hatami, A.; Moetakef-Imani, B. Innovative adaptive pitch control for small wind turbine fatigue load reduction. Mechatronics 2016, 40, 137–145. [Google Scholar] [CrossRef]
- Yuan, Y.; Tang, J. Adaptive pitch control of wind turbine for load mitigation under structural uncertainties. Renew. Energy 2017, 105, 483–494. [Google Scholar] [CrossRef]
- Rahimi, M.; Asadi, M. Control and dynamic response analysis of full converter wind turbines with squirrel cage induction generators considering pitch control and drive train dynamics. Int. J. Electr. Power Energy Syst. 2019, 108, 280–292. [Google Scholar] [CrossRef]
- Lasheen, A.; Elnaggar, M.; Yassin, H. Adaptive control design and implementation for collective pitch in wind energy conversion systems. ISA Trans. 2020, 102, 251–263. [Google Scholar] [CrossRef] [PubMed]
- Boukhezzar, B.; Lupu, L.; Lupu, L.; Hand, M. Multivariable control strategy for variable speed, variable pitch wind turbines. Renew. Energy 2007, 32, 1273–1287. [Google Scholar] [CrossRef]
- Chen, L.; Yang, Y.; Gao, Y.; Gao, Z.; Guo, Y.; Sun, L. A novel real-time feedback pitch angle control system for vertical-axis wind turbines. J. Wind Eng. Ind. Aerodyn. 2019, 195, 104023. [Google Scholar] [CrossRef]
- Barambones, O.; Cortajarena, J.A.; Calvo, I.; de Durana, J.M.G.; Alkorta, P.; Karami-Mollaee, A. Real time observer and control scheme for a wind turbine system based on a high order sliding modes. J. Frankl. Inst. 2021, 358, 5795–5819. [Google Scholar] [CrossRef]
- Asgharnia, A.; Shahnazi, R.; Jamali, A. Performance and robustness of optimal fractional fuzzy PID controllers for pitch control of a wind turbine using chaotic optimization algorithms. ISA Trans. 2018, 79, 27–44. [Google Scholar] [CrossRef]
- Petras, I. Fractional Order Nonlinear Systems; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Kilbsa, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier: New York, NY, USA, 2006. [Google Scholar]
- Podlubny, I. Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications; Academic Press: San Diego, CA, USA, 1998. [Google Scholar]
- Qiu, F.; Liu, Z.; Liu, R.; Quan, X.; Tao, C.; Wang, Y. Fluid flow signals processing based on fractional Fourier transform in a stirred tank reactor. ISA Trans. 2019, 90, 268–277. [Google Scholar] [CrossRef]
- Li, Y.; Chen, Y.; Podlubny, I. Stability of fractional-order nonlinear dynamic systems: Lyapunov direct method and generalized Mittag–Leffler stability. Comput. Math. Appl. 2010, 59, 1810–1821. [Google Scholar] [CrossRef] [Green Version]
- Aguila-Camacho, N.; Duarte-Mermoud, M.A.; Gallegos, J.A. Lyapunov functions for fractional order systems. Commun. Nonlinear Sci. Numer. Simul. 2014, 19, 2951–2957. [Google Scholar] [CrossRef]
- Choi, Y.-P.; Ju, H.; Koo, D. Convergence analysis of Particle Swarm Optimization in one dimension. Appl. Math. Lett. 2023, 137, 108481. [Google Scholar] [CrossRef]
- He, Z.; Liu, T.; Liu, H. Improved particle swarm optimization algorithms for aerodynamic shape optimization of high-speed train. Adv. Eng. Softw. 2022, 173, 103242. [Google Scholar] [CrossRef]
- Jafarzadeh, S.; Fadali, M.S. On the Stability and Control of Continuous-Time TSK Fuzzy Systems. IEEE Trans. Cybern. 2012, 43, 1073–1087. [Google Scholar] [CrossRef] [PubMed]
- Boukhezzar, B.; Siguerdidjane, H. Nonlinear Control of a Variable-Speed Wind Turbine Using a Two-Mass Model. IEEE Trans. Energy Convers. 2010, 26, 149–162. [Google Scholar] [CrossRef]
- Shantanu, D. Functional Fractional Calculus for System Identification and Controls; Springer-Verlag: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Bossanyi, E.A.; Wright, A.D.; Fleming, P.A. Controller Field Tests on the NREL CART2 Turbine; No. NREL/TP-5000-49085; National Renewable Energy Lab (NREL): Golden, CO, USA, 2010. [Google Scholar]
Parameter | Value | Unit |
---|---|---|
Notation | Value | Unit |
---|---|---|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karami-Mollaee, A.; Barambones, O. Pitch Control of Wind Turbine Blades Using Fractional Particle Swarm Optimization. Axioms 2023, 12, 25. https://doi.org/10.3390/axioms12010025
Karami-Mollaee A, Barambones O. Pitch Control of Wind Turbine Blades Using Fractional Particle Swarm Optimization. Axioms. 2023; 12(1):25. https://doi.org/10.3390/axioms12010025
Chicago/Turabian StyleKarami-Mollaee, Ali, and Oscar Barambones. 2023. "Pitch Control of Wind Turbine Blades Using Fractional Particle Swarm Optimization" Axioms 12, no. 1: 25. https://doi.org/10.3390/axioms12010025
APA StyleKarami-Mollaee, A., & Barambones, O. (2023). Pitch Control of Wind Turbine Blades Using Fractional Particle Swarm Optimization. Axioms, 12(1), 25. https://doi.org/10.3390/axioms12010025