Ultimate Bounds for a Diabetes Mathematical Model Considering Glucose Homeostasis
Abstract
:1. Introduction
1.1. Mathematical Modeling of Diabetes Mellitus
1.2. Recent Contributions, ODE Model Description, and Proposed Analysis
2. Materials and Methods
The Localization of Compact Invariant Sets Method
3. Results
3.1. Bounding the Diabetes Mathematical Model including Glucose Homeostasis Using LCIS Method
3.2. Bounded Positively Invariant Domain
3.3. Analysis for the Model When a T2DM Case Is Considered
3.4. Numerical Simulations: In Silico Experimentation
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Saeedi, P.; Salpea, P.; Karuranga, S.; Petersohn, I.; Malanda, B.; Gregg, E.W.; Unwin, N.; Wild, S.H.; Williams, R. Mortality Attributable to Diabetes in 20–79 Years Old Adults, 2019 Estimates: Results from the International Diabetes Federation Diabetes Atlas. Diabetes Res. Clin. Pract. 2020, 162, 108086. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Williams, R.; Karuranga, S.; Malanda, B.; Saeedi, P.; Basit, A.; Besançon, S.; Bommer, C.; Esteghamati, A.; Ogurtsova, K.; Zhang, P.; et al. Global and regional estimates and projections of diabetes-related health expenditure: Results from the international diabetes federation diabetes atlas. Diabetes Res. Clin. Pract. 2020, 162, 108072. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Makroglou, A.; Li, J.; Kuang, Y. Mathematical models and software tools for the glucose-insulin regulatory system and diabetes: An overview. Appl. Numer. Math. 2006, 56, 559–573. [Google Scholar] [CrossRef]
- Gaetano, A.D.; Hardy, T.; Beck, B.; Abu-Raddad, E.; Palumbo, P.; Bue-Valleskey, J.; Pørksen, N. Mathematical models of diabetes progression. Am. J. Physiol.-Endocrinol. Metab. 2008, 295, E1462–E1479. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nath, A.; Biradar, S.; Balan, A.; Dey, R.; Padhi, R. Physiological models and control for type 1 diabetes mellitus: A brief review. IFAC-PapersOnLine 2018, 51, 289–294. [Google Scholar] [CrossRef]
- Kovatchev, B. A century of diabetes technology: Signals, models, and artificial pancreas control. Trends Endocrinol. Metab. 2019, 30, 432–444. [Google Scholar] [CrossRef] [PubMed]
- Tejedor, M.; Woldaregay, A.Z.; Godtliebsen, F. Reinforcement learning application in diabetes blood glucose control: A systematic review. Artif. Intell. Med. 2020, 104, 101836. [Google Scholar] [CrossRef] [PubMed]
- Vera, J.; Lischer, C.; Nenov, M.; Nikolov, S.; Lai, X.; Eberhardt, M. Mathematical modelling in biomedicine: A primer for the curious and the skeptic. Int. J. Mol. Sci. 2021, 22, 547. [Google Scholar] [CrossRef] [PubMed]
- Rathee, S. ODE models for the management of diabetes: A review. Int. J. Diabetes Dev. Ctries 2016, 37, 4–15. [Google Scholar] [CrossRef]
- Palmer, A.J. Computer modeling of diabetes and its complications: A report on the fifth mount hood challenge meeting. Value Health 2013, 16, 670–685. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valle, P.A.; Coria, L.N.; Salazar, Y. Tumor clearance analysis on a cancer chemo-immunotherapy mathematical model. Bull. Math. 2019, 81, 4144–4173. [Google Scholar] [CrossRef]
- Starkov, K.E. A cancer model for the angiogenic switch and immunotherapy: Tumor eradication in analysis of ultimate dynamics. Int. J. Bifurcation Chaos 2020, 30, 2050150. [Google Scholar] [CrossRef]
- Gamboa, D.; Coria, L.N.; Cárdenas, J.R.; Ramírez, R.; Valle, P.A. Hardware implementation of a non-linear observer for a diabetes mellitus type 1 mathematical model. Comput. Sist. 2019, 23, 1475–1486. [Google Scholar] [CrossRef]
- Gamboa, D.; Vázquez, C.E.; Campos, P.J. Nonlinear analysis for a type-1 diabetes model with focus on t-cells and pancreatic β-cells behavior. Math. Comput. Appl. 2020, 25, 23. [Google Scholar] [CrossRef]
- Lombarte, M.; Lupo, M.; Brenda, L.F.; Campetelli, G.; Marilia, A.B.; Basualdo, M.; Rigalli, A. In vivo measurement of the rate constant of liver handling of glucose and glucose uptake by insulin-dependent tissues, using a mathematical model for glucose homeostasis in diabetic rats. J. Theor. Biol. 2018, 439, 205–215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lombarte, M.; Lupo, M.; Campetelli, G.; Basualdo, M.; Rigalli, A. Mathematical model of glucose–insulin homeostasis in healthy rats. Math. Biosci. 2013, 245, 269–277. [Google Scholar] [CrossRef]
- Brenner, M.; Kwon, G.; Lee, H.F.; Johns, M.; Malik, N. Simulating and predicting glucose response in lean and obese mice. In Proceedings of the 2014 40th Annual Northeast Bioengineering Conference (NEBEC), Boston, MA, USA, 25–27 April 2014. [Google Scholar]
- Lombarte, M.; Fina, B.; Lupion, P.; Lupo, M.; Rigalli, A. In vivo measurementof fluoride effects on glucose homeostasis: An explanation for the decrease in intelligence quotient andinsulin resistance induced by fluoride. Fluoride 2016, 3 Pt 1, 204–210. [Google Scholar]
- Khalil, H. Nonlinear Systems, 3rd ed.; Prentice-Hall: Hoboken, NJ, USA, 2002. [Google Scholar]
- Ha, J.; Sherman, A. Type 2 diabetes: One disease, many pathways. Am. J. Physiol.-Endocrinol. Metab. 2020, 319, E410–E426. [Google Scholar] [CrossRef] [PubMed]
- Sánchez, O.D.; Ruiz-Velázquez, E.; Alanís, A.Y.; Quiroz, G.; Torres-Treviño, L. Parameter estimation of a meal glucose–insulin model for TIDM patients from therapy historical data. IET Syst. Biol. 2019, 13, 8–15. [Google Scholar] [CrossRef]
- Wallace, T.M.; Levy, J.C.; Matthews, D.R. Use and abuse of HOMA modeling. Diabetes Care 2004, 27, 1487–1495. [Google Scholar] [CrossRef] [Green Version]
- Man, C.D.; Micheletto, F.; Lv, D.; Breton, M.; Kovatchev, B.; Cobelli, C. The UVA/PADOVA type 1 diabetes simulator. J. Diabetes Sci. Technol. 2014, 8, 26–34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krishchenko, A.P. Localization of invariant compact sets of dynamical systems. Differ. Equ. 2005, 41, 1669–1676. [Google Scholar] [CrossRef]
- Krishchenko, A.P.; Starkov, K.E. Localization of compact invariant sets of the lorenz system. Phys. Lett. A 2006, 353, 383–388. [Google Scholar] [CrossRef]
Parameter | T1DM | T2DM |
---|---|---|
- | ||
- | ||
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gamboa, D.; Coria, L.N.; Valle, P.A. Ultimate Bounds for a Diabetes Mathematical Model Considering Glucose Homeostasis. Axioms 2022, 11, 320. https://doi.org/10.3390/axioms11070320
Gamboa D, Coria LN, Valle PA. Ultimate Bounds for a Diabetes Mathematical Model Considering Glucose Homeostasis. Axioms. 2022; 11(7):320. https://doi.org/10.3390/axioms11070320
Chicago/Turabian StyleGamboa, Diana, Luis N. Coria, and Paul A. Valle. 2022. "Ultimate Bounds for a Diabetes Mathematical Model Considering Glucose Homeostasis" Axioms 11, no. 7: 320. https://doi.org/10.3390/axioms11070320
APA StyleGamboa, D., Coria, L. N., & Valle, P. A. (2022). Ultimate Bounds for a Diabetes Mathematical Model Considering Glucose Homeostasis. Axioms, 11(7), 320. https://doi.org/10.3390/axioms11070320