The Existence of Radial Solutions to the Schrödinger System Containing a Nonlinear Operator
Abstract
:1. Introduction
2. Preliminaries
3. The Entire Positive Bounded Radial Solutions
4. The Entire Positive Blow-Up Radial Solutions
5. The Semifinite Entire Positive Blow-Up Radial Solutions
6. Example
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Osgood, W.F. Beweis der Existenz einer LÖsung der Differential gleichung = f (x, y) ohne Hinzunahme der Cauchy-Lipschitz’schen Bedingung. Monatsh. Math. Phys. 1898, 9, 331–345. [Google Scholar] [CrossRef] [Green Version]
- Papi, M. A generalized Osgood condition for viscosity solutions to fully nonlinear parabolic degenerate equations. Adv. Differ. Equ. 2002, 7, 1125–1151. [Google Scholar]
- Fan, S.; Jiang, L.; Davison, M. Existence and uniqueness result for multidimensional BSDEs with generators of Osgood type. Front. Math. China 2013, 8, 811–824. [Google Scholar] [CrossRef]
- Li, K. No local L1 solutions for semilinear fractional heat equations. Fract. Calc. Appl. Anal. 2017, 20, 1328–1337. [Google Scholar] [CrossRef] [Green Version]
- Villa-Morales, J. An Osgood condition for a semilinear reaction-diffusion equation with time-dependent generator. Arab J. Math. Sci. 2016, 22, 86–95. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Hou, W. Standing waves of nonlinear fractional p-Laplacian Schrödinger equation involving logarithmic nonlinearity. Appl. Math. Lett. 2020, 102, 106149. [Google Scholar] [CrossRef]
- Laister, R.; Robinson, J.C.; Sierżȩga, M. Non-existence of local solutions of semilinear heat equations of Osgood type in bounded domains. Comptes Rendus Math. 2014, 352, 621–626. [Google Scholar] [CrossRef] [Green Version]
- Laister, R.; Robinson, J.C.; Sierżȩga, M. A necessary and sufficient condition for uniqueness of the trivial solution in semilinear parabolic equations. J. Differ. Equ. 2017, 262, 4979–4987. [Google Scholar] [CrossRef] [Green Version]
- Fan, S. Existence, uniqueness and approximation for Lp solutions of reflected BSDEs with generators of one-sided Osgood type. Acta Math. Sin. 2017, 33, 1–32. [Google Scholar] [CrossRef]
- Kurihura, S. Large-amplitude quasi-solitons in superfluid films. J. Phys. Soc. 1981, 50, 3262–3267. [Google Scholar] [CrossRef]
- Kosevich, A.; Ivanov, B.; Kovalev, A. Magnetic solitons. Phys. Rep. 1990, 194, 117–238. [Google Scholar] [CrossRef]
- Quispel, G.; Capel, H. Equation of motion for the Heisenberg spin chain. Phys. Lett. A 1982, 110, 41–80. [Google Scholar] [CrossRef]
- Severo, J. Quasilinear Schrödinger equations involving concave and convex nonlinearities. Commun. Pure Appl. Anal. 2009, 8, 621–644. [Google Scholar]
- Miyagaki, O.H.; Soares, S.H. Soliton solutions for quasilinear Schrödinger equations with critical growth. J. Differ. Equ. 2010, 248, 722–744. [Google Scholar]
- Floer, A.; Weinstein, A. Nonspreading wave packets for the cubic Schrödinger equation with a bounded potential. J. Funct. Anal. 1986, 69, 397–408. [Google Scholar] [CrossRef] [Green Version]
- Litvak, A.; Sergeev, A. One-dimensional collapse of plasma waves. JETP Lett. 1978, 27, 517–520. [Google Scholar]
- Sun, Y.; Liu, L.; Wu, Y. The existence and uniqueness of positive monotone solutions for a class of nonlinear Schrödinger equations on infinite domains. J. Comput. Appl. Math. 2017, 321, 478–486. [Google Scholar] [CrossRef]
- Zhang, X.; Wu, Y.; Cui, Y. Existence and nonexistence of blow-up solutions for a Schrödinger equation involving a nonlinear operator. Appl. Math. Lett. 2018, 82, 85–91. [Google Scholar] [CrossRef]
- Wang, G.; Yang, Z.; Agarwal, R.P.; Zhang, L. Study on a class of Schrödinger elliptic system involving a nonlinear operator. Nonlinear Anal. Model. Control 2020, 25, 846–859. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhou, S. Existence of entire positive k-convex radial solutions to Hessian equations and systems with weights. Appl. Math. Lett. 2015, 50, 48–55. [Google Scholar] [CrossRef]
- Zhang, Z. Optimal global and boundary asymptotic behavior of large solutions to the Monge-Ampère equation. J. Funct. Anal. 2020, 278, 108512. [Google Scholar] [CrossRef]
- Qin, J.; Wang, G.; Zhang, L.; Ahmad, B. Monotone iterative method for a p-Laplacian boundary value problem with fractional conformable derivatives. Bound. Value Probl. 2019, 2019, 145. [Google Scholar] [CrossRef] [Green Version]
- Wang, G. Twin iterative positive solutions of fractional q-difference Schrödinger equations. Appl. Math. Lett. 2018, 76, 103–109. [Google Scholar] [CrossRef]
- Wang, G.; Ren, X.; Zhang, L.; Ahmad, B. Explicit iteration and unique positive solution for a Caputo-Hadamard fractional turbulent flow model. IEEE Access 2019, 7, 109833–109839. [Google Scholar] [CrossRef]
- Pei, K.; Wang, G.; Sun, Y. Successive iterations and positive extremal solutions for a Hadamard type fractional integro-differential equations on infinite domain. Appl. Math. Comput. 2017, 312, 158–168. [Google Scholar] [CrossRef]
- Zhang, L.; Ahmad, B.; Wang, G. Explicit iterations and extremal solutions for fractional differential equations with nonlinear integral boundary conditions. Appl. Math. Comput. 2015, 268, 388–392. [Google Scholar] [CrossRef]
- Peterson, J.D.; Wood, A.W. Large solutions to non-monotone semilinear elliptic systems. J. Math. Anal. Appl. 2011, 384, 284–292. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Liu, L. The existence and nonexistence of entire positive solutions of semilinear elliptic systems with gradient term. J. Math. Anal. Appl. 2010, 371, 300–308. [Google Scholar] [CrossRef] [Green Version]
- Covei, D.-P. Radial and nonradial solutions for a semilinear elliptic system of Schrödinger type. Funkcial. Ekvac. 2011, 54, 439–449. [Google Scholar] [CrossRef] [Green Version]
- Lair, A.V. A necessary and sufficient condition for the existence of large solutions to sublinear elliptic systems. J. Math. Anal. Appl. 2010, 365, 103–108. [Google Scholar] [CrossRef]
- Lair, A.V.; Wood, A.W. Existence of entire large positive solutions of semilinear elliptic systems. J. Differ. Equ. 2000, 164, 380–394. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Zhang, P.; Zhang, Z. A remark on the existence of entire positve solutions for a class of semilinear elliptic system. J. Math. Anal. Appl. 2010, 365, 338–341. [Google Scholar] [CrossRef] [Green Version]
- Ghanmi, A.; Maagli, H.; Radulescu, V.; Zeddini, N. Large and bounded solutions for a class of nonlinear Schrödinger stationary systems. Anal. Appl. 2009, 7, 391–404. [Google Scholar] [CrossRef]
- Covei, D.-P. The Keller-Osserman-type conditions for the study of a semilinear elliptic system. Bound. Value Probl. 2019, 2019, 104. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, G.; Zhang, Z.; Yang, Z. The Existence of Radial Solutions to the Schrödinger System Containing a Nonlinear Operator. Axioms 2022, 11, 282. https://doi.org/10.3390/axioms11060282
Wang G, Zhang Z, Yang Z. The Existence of Radial Solutions to the Schrödinger System Containing a Nonlinear Operator. Axioms. 2022; 11(6):282. https://doi.org/10.3390/axioms11060282
Chicago/Turabian StyleWang, Guotao, Zhuobin Zhang, and Zedong Yang. 2022. "The Existence of Radial Solutions to the Schrödinger System Containing a Nonlinear Operator" Axioms 11, no. 6: 282. https://doi.org/10.3390/axioms11060282