On the Generalized Gaussian Fibonacci Numbers and Horadam Hybrid Numbers: A Unified Approach
Abstract
:1. Introduction
2. On Generalized Gaussian Fibonacci Numbers
3. A General Identity for Horadam Hybrid Numbers
- (i)
- is the nth Fibonacci hybrid number,
- (ii)
- is the th Lucas hybrid number,
- (iii)
- is the nth Pell hybrid number,
- (iv)
- is the th Pell-Lucas hybrid number.
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Horadam, A.F. Generating Functions for Powers of A Certain Generalised Sequence of Numbers. Duke Math. J. 1965, 68, 437–446. [Google Scholar] [CrossRef]
- Pethe, S.; Horadam, A.F. Generalized Gaussian Fibonacci Numbers. Bull. Aust. Math. Soc. 1986, 33, 37–48. [Google Scholar] [CrossRef] [Green Version]
- Arslan, H. Gaussian Pell and Gaussian Pell-Lucas Quaternions. Filomat 2021, 35, 1609–1617. [Google Scholar] [CrossRef]
- Horadam, A.F. Complex Fibonacci Numbers and Fibonacci Quaternions. Am. Math. Mon. 1963, 70, 289–291. [Google Scholar] [CrossRef]
- Jordan, H. Gaussian Fibonacci and Lucas Numbers. Fibonacci Q. 1965, 3, 315–318. [Google Scholar]
- Aşcı, M.; Gürel, E. Gaussian Jacobsthal and Gaussian Jacobsthal-Lucas Numbers. Ars Comb. 2013, 111, 53–63. [Google Scholar]
- Halıcı, S.; Oz, S. On Some Gaussian Pell and Pell-Lucas Numbers. Ordu Univ. J. Sci. Technol. 2016, 6, 8–18. [Google Scholar]
- Daşdemir, A.; Bilgici, G. Gaussian Mersenne Numbers and Generalized Mersenne Quaternions. Notes Number Theory Discret. Math. 2019, 25, 87–96. [Google Scholar] [CrossRef] [Green Version]
- Kartal, M.Y. Gaussian Bronze Fibonacci Numbers. EJONS Int. J. Math. Eng. Nat. Sci. 2020, 13, 19–25. [Google Scholar]
- Kumari, M.; Tanti, J.; Prasad, K. On Some New Families of k-Mersenne and Generalized k-Gaussian Mersenne Numbers and Their Polynomials. 2021. Available online: https://arxiv.org/abs/2111.09592 (accessed on 25 January 2022).
- Andelic, M.; da Fonseca, C.M.; Yılmaz, F. The bi-Periodic Horadam Sequence and Some Perturbed Tridiagonal 2-Toeplitz Matrices: A Unified Approach. Heliyon 2022, 8, e08863. [Google Scholar] [CrossRef]
- Da Fonseca, C.M. Unifying Some Pell and Fibonacci Identities. Appl. Math. Comput. 2014, 236, 41–42. [Google Scholar] [CrossRef]
- Udrea, G. A Note on The Sequence (Wn)n≥0 of A.F. Horadam. Port. Math. 1996, 53, 143–155. [Google Scholar]
- Cahil, N.D.; D’Errico, J.R.; Spence, J.P. Complex Factorizations of the Fibonacci and Lucas Numbers. Fibonacci Q. 2003, 41, 13–19. [Google Scholar]
- Da Fonseca, C.M.; Kouachi, S.; Mazilu, D.A.; Mazilu, I. A Multi-Temperature Kinetic Ising Model and The Eigenvalues of Some Perturbed Jacobi Matrices. Appl. Math. Comput. 2015, 259, 205–211. [Google Scholar] [CrossRef]
- Chang, H.-W.; Liu, S.-E.; Burridge, R. Exact Eigensystems for Some Matrices Arising from Discretizations. Linear Algebra Appl. 2009, 430, 999–1006. [Google Scholar] [CrossRef] [Green Version]
- Özdemir, M. Introduction to Hybrid Numbers. Adv. Appl. Clifford Algebra 2018, 28, 1–32. [Google Scholar] [CrossRef]
- Szynal-Liana, A.; Włoch, I. On Pell and Pell-Lucas Hybrid Numbers. Comment. Math. 2018, 58, 11–17. [Google Scholar] [CrossRef]
- Szynal-Liana, A.; Włoch, I. The Fibonacci Hybrid Numbers. Utilitas Math. 2019, 110, 3–10. [Google Scholar]
- Szynal-Liana, A.; Włoch, I. On Jacosthal and Jacosthal-Lucas Hybrid Numbers. Ann. Math. Silesianae 2019, 33, 276–283. [Google Scholar] [CrossRef] [Green Version]
- Catarino, P. On k-Pell Hybrid Numbers. J. Discret. Math. Sci. Cryptogr. 2019, 22, 83–89. [Google Scholar] [CrossRef]
- Mangueira, M.C.S.; Vieira, R.P.M.; Alves, F.R.V.; Catarino, P.M.M.C. The Hybrid Numbers of Padovan and Some Identities. Ann. Math. Silesianae 2020, 34, 256–267. [Google Scholar] [CrossRef]
- Mangueira, M.C.S.; Vieira, R.P.M.; Alves, F.R.V.; Catarino, P.M.M.C. The Oresme Sequence: The Generalization of its Matrix Form and its Hybridization Process. Notes Number Theory Discret. Math. 2021, 27, 101–111. [Google Scholar] [CrossRef]
- Akbıyık, M.; Akbıyık, S.Y.; Karaca, E.; Yılmaz, F. De Moivre’s and Euler Formulas for Matrices of Hybrid Numbers. Axioms 2021, 10, 213. [Google Scholar] [CrossRef]
- Szynal-Liana, A. The Horadam Hybrid Numbers. Discuss. Math. Gen. Algebra Appl. 2018, 38, 91–98. [Google Scholar] [CrossRef]
- Kızılateş, C. A Study on Horadam Hybrinomials. Fundam. J. Math. Appl. 2022, 5, 1–9. [Google Scholar] [CrossRef]
- Buschman, R.G. Fibonacci Numbers, Chebyshev Polynomials Generalizations and Difference Equations. Fibonacci Q. 1963, 1, 1–8. [Google Scholar]
Sequence | OEIS Code | ||
---|---|---|---|
1,1 | 0,1 | Fibonacci | A000045 |
1,1 | 2,1 | Lucas | A000032 |
2,1 | 0,1 | Pell (or (2,1)-Fibonacci) | A000129 |
2,1 | 2,2 | Pell-Lucas | A002203 |
3,1 | 0,1 | Bronze Fibonacci (or (3,1)-Fibonacci) | A006190 |
3,1 | 2,3 | Bronze Lucas | A006497 |
1,2 | 0,1 | Jacobsthal (or (1,2)-Fibonacci) | A001045 |
1,2 | 2,1 | Jacobsthal-Lucas | A014551 |
1,3 | 1,1 | Nickel Fibonacci (or (1,3)-Fibonacci) | A006130 |
1,3 | 2,1 | Nickel Lucas | A075118 |
Notation | a | b | p | q | Number |
---|---|---|---|---|---|
i | 1 | 1 | 1 | Gaussian Fibonacci | |
i | 1 | 2 | 1 | Gaussian Pell | |
1 | 1 | 2 | Gaussian Jacobsthal | ||
i | 1 | 3 | 1 | Gaussian Bronze | |
1 | 1 | 3 | Gaussian Nickel | ||
1 | 3 | Gaussian Mersenne | |||
1 | 1 | Gaussian Lucas | |||
2 | 1 | Gaussian Pell-Lucas | |||
1 | 2 | Gaussian Jacobsthal-Lucas |
Recurrence Relation | 0 | 1 | 2 | 3 | 4 |
---|---|---|---|---|---|
i | 1 | ||||
i | 1 | ||||
1 | |||||
1 | |||||
i | 1 | ||||
1 |
a | b | p | q | |
---|---|---|---|---|
1 | 1 | 1 | 1 | |
2 | 1 | 1 | 1 | |
1 | 2 | 2 | 1 | |
2 | 2 | 2 | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yılmaz, F.; Özkan, M. On the Generalized Gaussian Fibonacci Numbers and Horadam Hybrid Numbers: A Unified Approach. Axioms 2022, 11, 255. https://doi.org/10.3390/axioms11060255
Yılmaz F, Özkan M. On the Generalized Gaussian Fibonacci Numbers and Horadam Hybrid Numbers: A Unified Approach. Axioms. 2022; 11(6):255. https://doi.org/10.3390/axioms11060255
Chicago/Turabian StyleYılmaz, Fatih, and Mustafa Özkan. 2022. "On the Generalized Gaussian Fibonacci Numbers and Horadam Hybrid Numbers: A Unified Approach" Axioms 11, no. 6: 255. https://doi.org/10.3390/axioms11060255
APA StyleYılmaz, F., & Özkan, M. (2022). On the Generalized Gaussian Fibonacci Numbers and Horadam Hybrid Numbers: A Unified Approach. Axioms, 11(6), 255. https://doi.org/10.3390/axioms11060255