Exact Solutions of Nonlinear Partial Differential Equations via the New Double Integral Transform Combined with Iterative Method
Abstract
1. Introduction
2. Basic Definitions and Theorems
2.1. Fundamental Properties of the DLST
2.2. Existence and Uniqueness Conditions for the DLST
2.3. Properties of Derivatives
3. Principle of the DLST-Iterative (DLST-I) Method
4. Elucidative Examples
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Adomian, G. A review of the decomposition method and some recent results for nonlinear equations. Math. Comput. Model. 1990, 13, 17–43. [Google Scholar] [CrossRef]
- Adomian, G. Nonlinear dissipative wave equations. Appl. Math. Lett. 1998, 11, 125–126. [Google Scholar] [CrossRef][Green Version]
- Kaya, D. A new approach to solve a nonlinear wave equation. Bull. Malays. Math. Soc. 1998, 21, 95–100. [Google Scholar]
- Kaya, D.; Inc, M. On the solution of the nonlinear wave equation by the decomposition method. Bull. Malays. Math. Soc. 1999, 22, 151–155. [Google Scholar]
- Kaya, D.; Aassila, M. An application for a generalized KdV equation by the decomposition method. Phys. Lett. A 2002, 299, 201–206. [Google Scholar] [CrossRef]
- Kaya, D. An explicit and numerical solutions of some fifth-order KdV equation by decomposition method. Appl. Math. Comput. 2003, 144, 353–363. [Google Scholar] [CrossRef]
- Pamuk, S. Solution of the porous media equation by Adomian’s decomposition method. Phys. Lett. A 2005, 344, 184–188. [Google Scholar] [CrossRef]
- Wazwaz, A.M. The variational iteration method: A reliable analytic tool for solving linear and nonlinear wave equations. Comput. Math. Appl. 2007, 54, 926–932. [Google Scholar] [CrossRef]
- Wazwaz, A.M. The variational iteration method: A powerful scheme for handling linear and nonlinear diffusion equations. Comput. Math. Appl. 2007, 54, 933–939. [Google Scholar] [CrossRef]
- Rafei, M.; Ganji, D.D. Explicit solutions of Helmholtz equation and fifth-order KdV equation using homotopy perturbation method. Int. J. Nonlinear Sci. Numer. Simul. 2006, 7, 321–329. [Google Scholar] [CrossRef]
- Keskin, Y.; Oturanc, G. Reduced differential transform method for solving linear and nonlinear wave equations. Iran. J. Sci. Technol. Trans. A 2010, 34, 113–122. [Google Scholar]
- Keskin, Y.; Oturanc, G. Reduced differential transform method for generalized KdV equations. Math. Comput. Appl. 2010, 15, 382–393. [Google Scholar] [CrossRef]
- Jajarmi, A.; Baleanu, D.; Zarghami Vahid, K.; Mobayen, S. A general fractional formulation and tracking control for immunogenic tumor dynamics. Math. Methods Appl. Sci. 2022, 45, 667–680. [Google Scholar] [CrossRef]
- Khater, M. Diverse bistable dark novel explicit wave solutions of cubic–quintic nonlinear Helmholtz model. Mod. Phys. Lett. B 2021, 35, 2150441. [Google Scholar] [CrossRef]
- Saadeh, R. Numerical algorithm to solve a coupled system of fractional order using a novel reproducing kernel method. Alex. Eng. J. 2021, 60, 4583–4591. [Google Scholar] [CrossRef]
- Saadeh, R.; Ghazal, B. A new approach on transforms: Formable integral transform and its applications. Axioms 2021, 10, 332. [Google Scholar] [CrossRef]
- Khater, M.; Lu, D. Analytical versus numerical solutions of the nonlinear fractional time–space telegraph equation. Mod. Phys. Lett. B 2021, 35, 2150372. [Google Scholar] [CrossRef]
- Erturk, V.S.; Godwe, E.; Baleanu, D.; Kumare, P.; Asadf, J.; Jajarmig, A. Novel fractional-order Lagrangian to describe motion of beam on nanowire. Acta Phys. Pol. A 2021, 140, 265–272. [Google Scholar] [CrossRef]
- Qazza, A.; Burqan, A.; Saadeh, R. A new attractive method in solving families of fractional differential equations by a new transform. Mathematics 2021, 9, 3039. [Google Scholar] [CrossRef]
- Burqan, A.; Saadeh, R.; Qazza, A. A novel numerical approach in solving fractional neutral pantograph equations via the ARA integral transform. Symmetry 2022, 14, 50. [Google Scholar] [CrossRef]
- Baleanu, D.; Ghassabzade, F.; Nieto, J.J.; Jajarmi, A. On a new and generalized fractional model for a real cholera outbreak. Alex. Eng. J. 2022, 61, 9175–9186. [Google Scholar] [CrossRef]
- Khater, M.A. Diverse solitary and Jacobian solutions in a continually laminated fluid with respect to shear flows through the Ostrovsky equation. Mod. Phys. Lett. B 2021, 35, 2150220. [Google Scholar] [CrossRef]
- Sakamoto, K.; Yamamoto, M. Initial value boundary value problems for fractional diffusion wave equations and applications to some inverse problems. J. Math. Anal. Appl. 2011, 382, 426–447. [Google Scholar] [CrossRef]
- Ahmed, S.; Elzaki, T.; Elbadri, M.; Mohamed, M.Z. Solution of partial differential equations by new double integral transform (Laplace-Sumudu transform). Ain Shams Eng. J. 2021, 12, 4045–4049. [Google Scholar] [CrossRef]
- Ahmed, S.; Elzaki, T.; Hassan, A.A. Solution of integral differential equations by new double integral transform (Laplace-Sumudu transform). J. Abstr. Appl. Anal. 2020, 2020, 4725150. [Google Scholar] [CrossRef]
- Ahmed, S. Applications of new double integral transform (Laplace-Sumudu transform) in mathematical physics. J. Abstr. Appl. Anal. 2021, 2021, 6625247. [Google Scholar] [CrossRef]
- Elzaki, T.; Ahmed, S.; Areshi, M.; Chamekh, M. Fractional partial differential equations and novel double integral transform. J. King Saud Univ. Sci. 2022, 34, 101832. [Google Scholar] [CrossRef]
- Baleanu, D.; Hassan Abadi, M.; Jajarmi, A.; Zarghami Vahid, K.; Nieto, J.J. A new comparative study on the general fractional model of COVID-19 with isolation and quarantine effects. Alex. Eng. J. 2022, 61, 4779–4791. [Google Scholar] [CrossRef]
- Khater, M.A. Abundant breather and semi-analytical investigation: On high-frequency waves’ dynamics in the relaxation medium. Mod. Phys. Lett. B 2021, 35, 2150372. [Google Scholar] [CrossRef]
- Mishra, H.K.; Nagar, A.K. He-Laplace method for linear and nonlinear partial differential equations. J. Appl. Math. 2012, 2012, 180315. [Google Scholar]
- Hamza, A.E.; Elzaki, T. Application of homotopy perturbation and Sumudu Transform Method for Solving Burgers Equations. Am. J. Theor. Appl. Stat. 2015, 4, 480–483. [Google Scholar] [CrossRef]
- Hilal, E.; Elzaki, T. Solution of nonlinear partial differential equations by new Laplace variational iteration method. J. Funct. Spaces 2014, 2014, 790714. [Google Scholar] [CrossRef]
- Khater, M.A. Abundant wave solutions of the perturbed Gerdjikov–Ivanov equation in telecommunication industry. Mod. Phys. B 2021, 35, 2150456. [Google Scholar] [CrossRef]
- Jajarmi, A.; Baleanu, D.; Zarghami Vahid, K.; Mohammadi Pirouz, H.; Asad, J.H. A new and general fractional Lagrangian approach: A capacitor microphone case study. Results Phys. 2021, 31, 104950. [Google Scholar] [CrossRef]
- Khan, Y.; Wu, Q. Homotopy perturbation transform method for nonlinear equations using He’s polynomials. Comput. Math. Appl. 2011, 61, 1963–1967. [Google Scholar] [CrossRef]
- Eltayeb, H.; Kilicman, A. A note on double Laplace transform and telegraphic equations. Abstr. Appl. Anal. 2013, 2013, 932578. [Google Scholar] [CrossRef]
- Dhunde, R.R.; Waghamare, G.L. Double Laplace iterative method for solving nonlinear partial differential equations. New Trends Math. Sci. 2019, 7, 138–149. [Google Scholar] [CrossRef]
- Eltayeb, H. A note on double Laplace decomposition method and nonlinear partial differential equations. New Trends Math. Sci. 2017, 5, 156–164. [Google Scholar] [CrossRef]
- Gejji, V.D.; Jafari, H. An iterative method for solving nonlinear functional equations. J. Math. Anal. Appl. 2006, 316, 753–763. [Google Scholar] [CrossRef]
- Ali, L.; Islam, S.; Gul, T.; Amiri, I.S. Solution of nonlinear problems by a new analytical technique using Daftardar-Gejji and Jafari polynomials. Adv. Mech. Eng. 2019, 11, 1687814019896962. [Google Scholar] [CrossRef]
- AL-Jawary, M.A.; Radhi, G.H.; Ravnik, J. Daftardar—Jafari method for solving nonlinear thin film flow problem. Arab. J. Basic Appl. Sci. 2018, 25, 20–27. [Google Scholar] [CrossRef]
- AL-Jawary, M.A. Analytic solutions for solving fourth-order parabolic partial differential equations with variable coefficients. Int. J. Adv. Sci. Tech. Res. 2015, 3, 531–535. [Google Scholar]
- Al-luhaibi, M.S. New iterative method for fractional gas dynamics and coupled Burger’s equations. Sci. World J. 2015, 2015, 153124. [Google Scholar] [CrossRef] [PubMed]
- Dhunde, R.R.; Waghamare, G.L. Double Laplace transform combined with iterative method for solving non-linear telegraph equation. J. Indian Math. Soc. 2016, 83, 221–230. [Google Scholar]
- Dhunde, R.R.; Waghamare, G.L. Analytical solution of the nonlinear Klein-Gordon equation using double Laplace transform and iterative method. Am. J. Comput. Appl. Math. 2016, 6, 195–201. [Google Scholar]
- Wazwaz, A.M. Partial Differential Equations and Solitary Wave’s Theory; Springer: New York, NY, USA; NDordrecht, The Netherlands; Berlin/Heidelberg, Germany, 2009. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmed, S.A.; Qazza, A.; Saadeh, R. Exact Solutions of Nonlinear Partial Differential Equations via the New Double Integral Transform Combined with Iterative Method. Axioms 2022, 11, 247. https://doi.org/10.3390/axioms11060247
Ahmed SA, Qazza A, Saadeh R. Exact Solutions of Nonlinear Partial Differential Equations via the New Double Integral Transform Combined with Iterative Method. Axioms. 2022; 11(6):247. https://doi.org/10.3390/axioms11060247
Chicago/Turabian StyleAhmed, Shams A., Ahmad Qazza, and Rania Saadeh. 2022. "Exact Solutions of Nonlinear Partial Differential Equations via the New Double Integral Transform Combined with Iterative Method" Axioms 11, no. 6: 247. https://doi.org/10.3390/axioms11060247
APA StyleAhmed, S. A., Qazza, A., & Saadeh, R. (2022). Exact Solutions of Nonlinear Partial Differential Equations via the New Double Integral Transform Combined with Iterative Method. Axioms, 11(6), 247. https://doi.org/10.3390/axioms11060247