Representative Points Based on Power Exponential Kernel Discrepancy
Abstract
:1. Introduction
2. Power Exponential Kernel Discrepancy
2.1. Kernel Discrepancy
2.2. Kernels in Existing Rep-Points Methods
2.2.1. Isotropic Kernel
2.2.2. Separable Kernel
2.3. Power Exponential Kernel
2.3.1. Definition
2.3.2. Visualization of Kernels
2.3.3. The Influence of Hyperparameters in PE Kernel on Rep-Points
2.3.4. PEKDs with and
3. Optimization Algorithm
3.1. Successive Convex Approximation
- 1
- is continuous and strongly convex about for all ;
- 2
- is differentiable about and .
- , where and ;
- where .
3.2. Algorithm for Generating Rep-Points under PEKD
3.2.1. Algorithm Statement
Algorithm 1: Rep-points construction algorithm under PEKD |
1 Set step size ; |
2 Initialize and points set with SP method; |
3 repeat |
4 for parallelly do |
5 with defined in (9); |
6 . |
7 end |
8 Update ; |
9 until converges; |
10 return the convergent point set . |
3.2.2. Complexity and Convergence of the Algorithm
4. Applications
4.1. Numerical Simulations
4.1.1. Visualization
4.1.2. Numerical Integration
- (1)
- Gaussian peak function ,
- (2)
- additive Gaussian function ,
4.1.3. Uncertainty Propagation
- (1)
- , where ;
- (2)
- , where ;
- (3)
- , where , .
4.2. Reduction of MCMC Chain
5. Conclusions and Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
PEKD | power exponential kernel discrepancy |
rep-points | representative points |
MCMC | Markov chain Monte Carlo |
SP | support points |
PSP | projected support points with small, large s |
PE | power exponential |
SCA | successive convex approximation |
MC | Monte Carlo |
RQMC | randomized quasi Monte Carlo |
x | scalar variable x |
vector variable x | |
point set | |
expectation of the random variable from the distribution F | |
kernel of energy distance | |
power exponential kernel with hyperparameters and |
Appendix A
References
- Flury, B.A. Principal Points. Biometrika 1990, 77, 33–41. [Google Scholar] [CrossRef]
- Mak, S.; Joseph, V.R. Support points. Ann. Stat. 2018, 46, 2562–2592. [Google Scholar] [CrossRef]
- Anderberg, M.R. Cluster Analysis for Applications; Academic Press: San Diego, CA, USA, 1973. [Google Scholar] [CrossRef]
- Fang, K.T.; He, S.D. The Problem of Selecting a Given Number of Representative Points in a Normal Population and a Generalized Mills’ Ratio; Technical Report; Stanford University, Department of Statistics: Stanford, CA, USA, 1982. [Google Scholar] [CrossRef]
- Flury, B.D. Estimation of principal points. J. R. Stat. Soc. Ser. C Appl. Stat. 1993, 42, 139–151. [Google Scholar] [CrossRef]
- Fang, K.; Zhou, M.; Wang, W. Applications of the representative points in statistical simulations. Sci. China Math. 2014, 57, 2609–2620. [Google Scholar] [CrossRef]
- Lemaire, V.; Montes, T.; Pagès, G. New weak error bounds and expansions for optimal quantization. J. Comput. Appl. Math. 2020, 371, 112670. [Google Scholar] [CrossRef] [Green Version]
- Mezic, I.; Runolfsson, T. Uncertainty propagation in dynamical systems. Automatica 2008, 44, 3003–3013. [Google Scholar] [CrossRef]
- Mohammadi, S.; Cremaschi, S. Efficiency of Uncertainty Propagation Methods for Estimating Output Moments. In Proceedings of the 9th International Conference on Foundations of Computer-Aided Process Design, 14–18 July 2019, Copper Mountain, CO, USA; Muñoz, S.G., Laird, C.D., Realff, M.J., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; Volume 47, pp. 487–492. [Google Scholar] [CrossRef]
- Owen, A.B. Statistically Efficient Thinning of a Markov Chain Sampler. J. Comput. Graph. Stat. 2017, 26, 738–744. [Google Scholar] [CrossRef]
- Riabiz, M.; Chen, W.Y.; Cockayne, J.; Swietach, P.; Niederer, S.A.; Mackey, L.; Oates, C.J. Optimal thinning of MCMC output. J. R. Stat. Soc. Ser. B 2022, 84, 1059–1081. [Google Scholar] [CrossRef]
- South, L.F.; Riabiz, M.; Teymur, O.; Oates, C.J. Postprocessing of MCMC. Annu. Rev. Stat. Its Appl. 2022, 9, 529–555. [Google Scholar] [CrossRef]
- Xu, L.H.; Fang, K.T.; Pan, J. Limiting behavior of the gap between the largest two representative points of statistical distributions. Commun. Stat.-Theory Methods 2021, 1–24. [Google Scholar] [CrossRef]
- Li, Y.; Fang, K.T.; He, P.; Peng, H. Representative Points from a Mixture of Two Normal Distributions. Mathematics 2022, 10, 3952. [Google Scholar] [CrossRef]
- Xu, L.H.; Fang, K.T.; He, P. Properties and generation of representative points of the exponential distribution. Stat. Pap. 2022, 63, 197–223. [Google Scholar] [CrossRef]
- Fang, K.T.; Liu, M.Q.; Qin, H.; Zhou, Y.D. Theory and Application of Uniform Experimental Designs; Springer: Singapore, 2018. [Google Scholar] [CrossRef]
- Pronzato, L.; Zhigljavsky, A. Bayesian quadrature, energy minimization and space-filling design. SIAM/ASA J. Uncertain. Quantif. 2020, 8, 959–1011. [Google Scholar] [CrossRef]
- Borodachov, S.; Hardin, D.; Saff, E. Low Complexity Methods for Discretizing Manifolds via Riesz Energy Minimization. Found. Comput. Math. 2014, 14, 1173–1208. [Google Scholar] [CrossRef] [Green Version]
- Joseph, V.R.; Dasgupta, T.; Tuo, R.; Wu, C.F.J. Sequential Exploration of Complex Surfaces Using Minimum Energy Designs. Technometrics 2015, 57, 64–74. [Google Scholar] [CrossRef]
- Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016. [Google Scholar]
- Yang, Q.; Zhang, Y.; Dai, W.; Pan, S.J. Transfer Learning; Cambridge University Press: Cambridge, UK, 2020. [Google Scholar] [CrossRef]
- Fang, K.T.; Wang, Y. Number-Theoretic Methods in Statistics; Chapman and Hall: London, UK, 1994. [Google Scholar]
- Briol, F.X.; Oates, C.J.; Girolami, M.; Osborne, M.A.; Sejdinovic, D. Probabilistic Integration: A Role in Statistical Computation? Stat. Sci. 2019, 34, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Welling, M.; Smola, A.J. Super-Samples from Kernel Herding. arXiv 2012, arXiv:1203.3472. [Google Scholar] [CrossRef]
- Hickernell, F.J. A generalized discrepancy and quadrature error bound. Math. Comput. 1998, 67, 299–322. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.D.; Fang, K.T.; Ning, J.H. Mixture discrepancy for quasi-random point sets. J. Complex. 2013, 29, 283–301. [Google Scholar] [CrossRef]
- Mak, S.; Joseph, V.R. Projected support points: A new method for high-dimensional data reduction. arXiv 2018, arXiv:1708.06897. [Google Scholar] [CrossRef]
- Scutari, G.; Sun, Y. Parallel and Distributed Successive Convex Approximation Methods for Big-Data Optimization. In Multi-Agent Optimization: Cetraro, Italy 2014; Facchinei, F., Pang, J.S., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 141–308. [Google Scholar] [CrossRef] [Green Version]
- Santner, T.J.; Williams, B.J.; Notz, W.I. The Design and Analysis of Computer Experiments; Springer: New York, NY, USA, 2018. [Google Scholar] [CrossRef]
- N’Gbo, N.; Tang, J. On the Bounds of Lyapunov Exponents for Fractional Differential Systems with an Exponential Kernel. Int. J. Bifurc. Chaos 2022, 32, 2250188. [Google Scholar] [CrossRef]
- Székely, G.J.; Rizzo, M.L. Energy statistics: A class of statistics based on distances. J. Stat. Plan. Inference 2013, 143, 1249–1272. [Google Scholar] [CrossRef]
- Fang, K.T.; Hickernell, F.J. Uniform Experimental Designs; Springer: New York, NY, USA, 2007. [Google Scholar] [CrossRef]
- Lange, K. MM Optimization Algorithms; SIAM: Philadelphia, PA, USA, 2016. [Google Scholar] [CrossRef]
- Stein, M.L. Large sample properties of simulations using latin hypercube sampling. Technometrics 1987, 29, 143–151. [Google Scholar] [CrossRef]
- Packham, N.; Schmidt, W.M. Latin hypercube sampling with dependence and applications in finance. J. Comput. Financ. 2010, 13, 81–111. [Google Scholar] [CrossRef] [Green Version]
- Aistleitner, C.; Hofer, M.; Tichy, R.F. A central limit theorem for Latin hypercube sampling with dependence and application to exotic basket option pricing. Int. J. Theor. Appl. Financ. 2012, 15, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Scutari, G.; Facchinei, F.; Song, P.; Palomar, D.P.; Pang, J.S. Decomposition by Partial Linearization: Parallel Optimization of Multi-Agent Systems. IEEE Trans. Signal Process. 2014, 62, 641–656. [Google Scholar] [CrossRef] [Green Version]
- Oakley, J.E.; O’Hagan, A. Bayesian inference for the uncertainty distribution of computer model outputs. Biometrika 2002, 89, 769–784. [Google Scholar] [CrossRef] [Green Version]
- Marrel, A.; Iooss, B.; Laurent, B.; Roustant, O. Calculations of sobol indices for the gaussian process metamodel. Reliab. Eng. Syst. Saf. 2009, 94, 742–751. [Google Scholar] [CrossRef] [Green Version]
- Székely, G.J.; Rizzo, M.L.; Bakirov, N.K. Measuring and testing dependence by correlation of distances. Ann. Stat. 2007, 35, 2769–2794. [Google Scholar] [CrossRef]
- Wang, S.; Liang, J.; Zhou, M.; Ye, H. Testing Multivariate Normality Based on F-Representative Points. Mathematics 2022, 10, 4300. [Google Scholar] [CrossRef]
- Liang, J.; He, P.; Yang, J. Testing Multivariate Normality Based on t-Representative Points. Axioms 2022, 11, 587. [Google Scholar] [CrossRef]
- Xiong, Z.K.; Liu, W.J.; Ning, J.H.; Qin, H. Sequential support points. Stat. Pap. 2022, 63, 1757–1775. [Google Scholar] [CrossRef]
- Xiao, Y.; Ning, J.H.; Xiong, Z.K.; Qin, H. Batch sequential adaptive designs for global optimization. J. Korean Stat. Soc. 2022, 51, 780–802. [Google Scholar] [CrossRef]
- Kong, X.; Zheng, W.; Ai, M. Representative points for distribution recovering. J. Stat. Plan. Inference 2023, 224, 69–83. [Google Scholar] [CrossRef]
- Joseph, V.R.; Vakayil, A. Split: An optimal method for data splitting. Technometrics 2022, 64, 166–176. [Google Scholar] [CrossRef]
- Zhang, M.; Zhou, Y.; Zhou, Z.; Zhang, A. Model-free Subsampling Method Based on Uniform Designs. arXiv 2022, arXiv:2209.03617. [Google Scholar] [CrossRef]
Parameter | Estimations of Quantities with Different Methods | |||||||
---|---|---|---|---|---|---|---|---|
Means | Variances | |||||||
SP | PSPs | PEKD1.5 | PEKD2 | SP | PSPs | PEKD1.5 | PEKD2 | |
21.00 | 21.43 | 21.49 | 21.60 | 2.72 | 2.61 | 4.33 | 3.21 | |
8.78 | 8.74 | 10.18 | 9.17 | 3.79 | 3.43 | 4.03 | 3.30 | |
7.00 | 7.33 | 8.71 | 7.17 | 4.27 | 4.12 | 5.31 | 3.63 | |
24.17 | 27.48 | 42.25 | 44.40 | 5.04 | 5.68 | 11.64 | 5.82 | |
r(1600) | 14.00 | 15.79 | 26.72 | 30.27 | - | - | - | - |
r(1625) | 12.85 | 14.29 | 24.04 | 25.16 | - | - | - | - |
r(1650) | 11.90 | 13.09 | 21.90 | 21.61 | - | - | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiong, Z.; Xiao, Y.; Ning, J.; Qin, H. Representative Points Based on Power Exponential Kernel Discrepancy. Axioms 2022, 11, 711. https://doi.org/10.3390/axioms11120711
Xiong Z, Xiao Y, Ning J, Qin H. Representative Points Based on Power Exponential Kernel Discrepancy. Axioms. 2022; 11(12):711. https://doi.org/10.3390/axioms11120711
Chicago/Turabian StyleXiong, Zikang, Yao Xiao, Jianhui Ning, and Hong Qin. 2022. "Representative Points Based on Power Exponential Kernel Discrepancy" Axioms 11, no. 12: 711. https://doi.org/10.3390/axioms11120711
APA StyleXiong, Z., Xiao, Y., Ning, J., & Qin, H. (2022). Representative Points Based on Power Exponential Kernel Discrepancy. Axioms, 11(12), 711. https://doi.org/10.3390/axioms11120711