Next Article in Journal
Mutant Number Laws and Infinite Divisibility
Next Article in Special Issue
Optimality Conditions and Dualities for Robust Efficient Solutions of Uncertain Set-Valued Optimization with Set-Order Relations
Previous Article in Journal
First Passage Analysis in a Queue with State Dependent Vacations
Previous Article in Special Issue
Fixed Point Theory for Multi-Valued Feng–Liu–Subrahmanyan Contractions
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Boundedness of Riesz Potential Operator on Grand Herz-Morrey Spaces

1
Department of Mathematics, Quaid-I-Azam University, Islamabad 45320, Pakistan
2
Department of Mathematics and Sciences, Prince Sultan University, Riyadh 11586, Saudi Arabia
3
Department of Mathematics, Capital University of Science and Technology, Islamabad 44000, Pakistan
4
Department of Mathematics, Government Post Graduate College, Haripur 22620, KPK, Pakistan
*
Author to whom correspondence should be addressed.
Axioms 2022, 11(11), 583; https://doi.org/10.3390/axioms11110583
Submission received: 2 September 2022 / Revised: 18 October 2022 / Accepted: 20 October 2022 / Published: 24 October 2022
(This article belongs to the Special Issue Special Issue in Honor of the 60th Birthday of Professor Hong-Kun Xu)

Abstract

:
In this paper, we introduce grand Herz–Morrey spaces with variable exponent and prove the boundedness of Riesz potential operators in these spaces.

1. Introduction

In the last two decades, under the influence of some applications revealed in [1], there was a vast boom of research of the so-called variable exponent spaces, and the operator in them. For the time being, the theory of such variable exponent Lebesgue, Orlicz, Lorentz and Sobolev function spaces is widely developed, and we refer to the books [2,3] and the surveying papers [4,5,6,7]. Herz spaces with variable exponents have been recently introduced in [8,9,10]. In [11], variable parameters were used to define continual Herz spaces, and proved the boundedness of sublinear operators in these spaces. The boundedness of other operators such as Riesz potential operator and the Marcinkiewicz integrals was proved in [12,13].
The concept of Morrey spaces L p , λ was introduced by C. Morrey in 1938 (see [14]) in order to study regularity questions that appear in the calculus of variations. They describe local regularity more precisely than Lebesgue spaces and are widely used not just in harmonic analysis, but also in PDEs. Meskhi introduced the idea of grand Morrey spaces L r ) , θ , λ and derived the boundedness of a class of integral operators (Hardy–Littlewood maximal functions, Calderón–Zygmund singular integrals and potentials) in these spaces, see ([15]). Moreover, Izuki [16] defined the Herz–Morrey spaces with a variable exponent and investigated the boundedness of fractional integrals on these spaces.
In [17], the idea of grand variable Herz spaces K ˙ q ( · ) α , p ) , θ ( R n ) was introduced and proved the boundedness of sublinear operators K ˙ q ( · ) α , p ) , θ ( R n ) . Motivated by the concept, in this article, we introduce the concept of grand Herz–Morrey spaces, and prove the boundedness of the Riesz potential operator on grand Herz–Morrey spaces with variable exponents. There are four sections in this article; the first section is dedicated to the introduction, the second section contains some basic definitions and lemmas, we introduce the concept of grand Herz–Morrey spaces in part three, and the boundedness of the Riesz potential operator on grand variable Herz–Morrey spaces is proved in the last section.

2. Preliminaries

For this section, we refer to [2,3,9,10,18].

2.1. Lebesgue Space with Variable Exponent

Assume that G R n is an open set and p ( · ) : G [ 1 , ) is a real-valued measurable function. Let the following condition hold:
1 p ( G ) p + ( G ) < ,
where
(i)
p : = ess inf g G p ( g )
(ii)
p + : = ess sup g G p ( g ) .
Lebesgue space L p ( · ) ( G ) is the space of measurable functions f 1 on G such that,
I L p ( · ) ( f 1 ) = G | f 1 ( g ) | p ( g ) d g < ,
norm is defined as,
f 1 L p ( · ) ( G ) = ess inf γ > 0 : I L p ( · ) f 1 γ 1 ,
this is the Banach function space, p ( g ) = p ( g ) p ( g ) 1 denotes the conjugate exponent of p ( g ) .
Next, we will define the space L loc p ( · ) ( G ) as,
L loc p ( · ) ( G ) : = κ : κ L p ( · ) ( K ) for all compact subsets K G .
Now to define the log-condition,
| η ( z 1 ) η ( z 2 ) | C ln | z 1 z 2 | , | z 1 z 2 | 1 2 , z 1 , z 2 G ,
where C = C ( η ) > 0 is not dependent on z 1 , z 2 .
For the decay condition: let η ( 1 , ) , such that
| η ( z 1 ) η | C ln ( e + | z 1 | ) ,
| η ( z 1 ) η 0 | C ln | z 1 | , | z 1 | 1 2 ,
inequality (4) holds for η 0 ( 1 , ) in case of homogenous Herz spaces. We adopted the following notations in this paper:
(i)
The Hardy–Littlewood maximal operator M for f L loc 1 ( G ) is defined as
M f ( g ) : = sup t > 0 t n D ( g , r ) | f ( g ) | d g ( g G ) ,
where D ( g , t ) : = { y G : | g y | < t } .
(ii)
The set P ( G ) is the collection of all p ( · ) satisfying p > 1 and p + < .
(iii)
P log = P log ( G ) is the class of functions p P ( G ) satisfying (1) and (2).
(iv)
When G is unbounded, P ( G ) and P 0 , ( G ) are the subsets of P ( G ) and its values lies in [ 1 , ) satisfying (3) and (4), respectively.
(v)
In the case G is bounded, P ( G ) and P 0 , ( G ) are the subsets of P ( G ) .
(vi)
In the case S is unbounded, P ( S ) are the subsets of exponents in L ( S ) and its values lies in [ 1 , ] , which satisfy both conditions (2) and (3), respectively, and P log ( S ) is the set of exponents p P ( S ) , satisfying condition (1).
C is a constant that is independent of the main parameters involved, and its value varies from line to line.
Lemma 1
([11]). Let D > 1 and η P 0 , ( R n ) . Then,
1 k 0 t n η ( 0 ) χ R t , D t η ( · ) k 0 t n η ( 0 ) , for 0 < t 1
and
1 k t n η χ R t , D t η ( · ) k t n η , for t 1 ,
respectively, where k 0 1 and k 1 depend on D and do not depend on t.
Lemma 2
(Generalized Hölder’s inequality [2]). Assume that G is a measurable subset of R n , and 1 p ( G ) p + ( G ) . Then,
f g L r ( · ) ( G ) C f L p ( · ) ( G ) g L q ( · ) ( G )
holds, where f L p ( · ) ( G ) , g L q ( · ) ( G ) and 1 r ( z ) = 1 p ( z ) + 1 q ( z ) for every z G .

2.2. Herz Spaces with Variable Exponent

We adopted the following notations in this subsection:
(a)
χ k = χ R k ;
(b)
R k = D k \ D k 1 ;
(c)
D k = D ( 0 , 2 k ) = { x R n : | x | < 2 k } for all k Z .
Definition 1.
Let r , s [ 1 , ) , α R , theclassical versions of Herz spaces, commonly known as non-homogenous and homogenous Herz spaces, can be defined by the norms,
g K r , s α ( R n ) : = g L r ( D ( 0 , 1 ) ) + k N 2 k α s R 2 k 1 , 2 k | g ( z ) | r d z s r 1 s ,
g K ˙ r , s α ( R n ) : = k Z 2 k α s R 2 k 1 , 2 k | g ( z ) | r d z s r 1 s ,
respectively, where R t , τ stands for the annulus R t , τ : = D ( 0 , τ ) \ D ( 0 , t ) .
Definition 2.
Let r [ 1 , ) , α R and s ( · ) P ( R n ) . The homogenous Herz space K ˙ s ( · ) α , r ( R n ) is defined by
K ˙ s ( · ) α , r ( R n ) = g L s ( · ) loc ( R n \ { 0 } ) : g K ˙ s ( · ) α , r ( R n ) < ,
where
g K ˙ s ( · ) α , r ( R n ) = k = k = 2 k α g χ k L s ( · ) r 1 r .
Definition 3.
Let r [ 1 , ) , α R and s ( · ) P ( R n ) . The non-homogenous Herz space K s ( · ) α , r ( R n ) is defined by
K s ( · ) α , r ( R n ) = g L loc s ( · ) ( R n \ { 0 } ) : g K s ( · ) α , r ( R n ) < ,
where
g K s ( · ) α , r ( R n ) = k = k = 2 k α g χ k L s ( · ) r 1 r + g L s ( · ) ( D ( 0 , 1 ) ) .

2.3. Herz–Morrey Spaces

Next, we define Herz–Morrey spaces with variable exponent.
Definition 4.
Let α R , 0 λ < , 0 < r < and s ( · ) P ( R n ) . A Herz–Morrey spaces with variable exponent M K ˙ r , s ( · ) α λ ( R n ) is defined by,
M K ˙ r , s ( · ) α λ ( R n ) = g L loc s ( · ) ( R n \ { 0 } ) : g M K ˙ r , s ( · ) α λ ( R n ) < ,
where
g M K ˙ r , s ( · ) α λ ( R n ) = sup k 0 Z 2 k 0 λ k = k 0 2 k α r g χ k L s ( · ) r ( R n ) 1 r .

2.4. Grand Lebesgue Sequence Space

Now, we will define the grand Lebesgue sequence space. G is representing one of the sets N 0 , Z n , N , Z in the following definitions (see [19]).
Definition 5.
Let r [ 1 , ) and θ > 0 . The grand Lebesgue sequence space l r ) θ can be defined by the norm
{ x k } k G l r ) θ ( G ) = x l r ) θ ( G ) : = sup δ > 0 δ θ k X | x k | r ( 1 + δ ) 1 r ( 1 + δ ) = sup δ > 0 δ θ r ( 1 + δ ) x l r ( 1 + δ ) θ ( G ) ,
where x = { x k } k G . The following nesting properties hold:
l r ( 1 δ ) l r l r ) , θ 1 l r ) , θ 2 l r ( 1 + δ )
for 0 < δ < 1 r , δ > 0 and 0 < θ 1 θ 2 .

3. Grand Variable Herz–Morrey Spaces

Grand variable Herz–Morrey spaces are introduced in this section.
Definition 6.
Let α ( · ) L ( R n ) , r [ 1 , ) , s : R n [ 1 , ) , θ > 0 , 0 λ < . We define the homogeneous grand variable Herz–Morrey spaces can be defined by the norm:
M K ˙ λ , s ( · ) α ( · ) , r ) , θ ( R n ) = g L loc s ( · ) ( R n \ { 0 } ) : g M K ˙ λ , s ( · ) α ( · ) , r ) , θ ( R n ) < ,
where
g M K ˙ λ , s ( · ) α ( · ) , r ) , θ ( R n ) = sup δ > 0 sup k o Z 2 k 0 λ δ θ k Z 2 k α ( · ) r ( 1 + δ ) g χ k L s ( · ) ( R n ) r ( 1 + δ ) 1 r ( 1 + δ ) .
For λ = 0 , the grand Herz–Morrey spaces become grand Herz spaces.
Non-homogeneous grand variable Herz–Morrey spaces can be defined in a similar way.
Theorem 1.
If 0 < r i < , 1 q q + < , α ( · ) L ( R n ) , i = 1 , 2 , 1 r = 1 r 1 + 1 r 2 , 1 = 1 q ( · ) + 1 q ( · ) , λ = λ 1 + λ 2 and α ( · ) = α ( · ) 1 ( · ) + α 2 ( · ) . Then
f g M K ˙ λ , 1 α ( · ) , r ) , θ f M K ˙ λ , q ( · ) α 1 ( · ) , r 1 ) , θ g M K ˙ λ , q ( · ) α 2 ( · ) , r 2 ) , θ .
Proof. 
We have
f g M K ˙ λ , 1 α ( · ) , ) , θ ( R n ) = sup δ > 0 sup k o Z 2 k 0 λ δ θ k Z 2 k α ( · ) r ( 1 + δ ) f χ k L 1 r ( 1 + δ ) 1 r ( 1 + δ ) = sup δ > 0 sup k o Z 2 k 0 λ δ θ k Z 2 k α ( · ) r ( 1 + δ ) 2 k 2 k + 1 | f g | r ( 1 + δ ) 1 r ( 1 + δ ) ,
by using Hölder’s inequality
C sup δ > 0 sup k o Z 2 k 0 λ δ θ k Z 2 k ( α 1 ( · ) + α 2 ( · ) ) r ( 1 + δ ) f χ k L q ( · ) r ( 1 + δ ) g χ k L q ( · ) r ( 1 + δ ) 1 r ( 1 + δ ) = C sup δ > 0 sup k o Z 2 k 0 λ δ θ k Z 2 k ( α 1 ( · ) + α 2 ( · ) ) r ( 1 + δ ) f χ k L q ( · ) r ( 1 + δ ) g χ k L q ( · ) r ( 1 + δ ) 1 r ( 1 + δ ) = C sup δ > 0 sup k o Z 2 k 0 λ δ θ k Z 2 k α 1 ( · ) f χ k L q ( · ) r ( 1 + δ ) 2 k α 2 ( · ) g χ k L q ( · ) r ( 1 + δ ) 1 r ( 1 + δ ) C sup δ > 0 sup k o Z 2 k 0 λ δ θ k Z 2 k α 1 ( · ) f χ k L q ( · ) ( R n ) r ( 1 + δ ) 2 k α 2 ( · ) g χ k L q ( · ) r ( 1 + δ ) 1 r ( 1 + δ ) ,
by using generalized Hölder’s inequality
C sup δ > 0 sup k o Z 2 k 0 λ δ θ k Z 2 k α 1 ( · ) f χ k L q ( · ) r 1 ( 1 + δ ) 1 r 1 ( 1 + δ ) × sup δ > 0 sup k o Z 2 k 0 λ δ θ k Z 2 k α 1 ( · ) f χ k L q ( · ) r 2 ( 1 + δ ) 1 r 2 ( 1 + δ ) = C f M K ˙ λ , q ( · ) α 1 ( · ) , r 1 ) , θ f M K ˙ λ , q ( · ) α 2 ( · ) , r 2 ) , θ .

4. Boundedness of the Riesz Potential Operator

Now Riesz potential operator can be defined as
I γ f ( z 1 ) = 1 η n ( γ ) R n f ( z 2 ) | z 1 z 2 | n γ d z 2
with the normalizing constant η n ( γ ) = 2 γ π n 2 Γ ( γ / 2 ) Γ ( ( n γ ) / 2 ) .
Whenever γ q 1 ( z 1 ) < n , we can define the Sobolev conjugate of q 1 by the usual relation
1 q 2 ( z 1 ) : = 1 q 1 ( z 1 ) γ n , z 1 R n
The well-known Sobolev theorem was extended to variable exponents in [20] for bounded sets in R n under the assumption that the maximal operator is bounded in L p ( · ) ( Ω ) ; for unbounded sets, proved in [21], the Sobolev theorem runs as follows.
Theorem 2.
Let s 2 P log ( R n ) and γ s 1 + < n ,
I γ g s 2 ( · ) C g s 1 ( · ) .
Theorem 3.
Let 1 r < , α ( · ) , q ( · ) P log ( R n ) , q 1 issobolev conjugate defined by the relation (13) such that
(i)
γ n q ( 0 ) < α ( 0 ) < n q ( 0 ) ;
(ii)
γ n q < α < n q .
Suppose that Riesz potential operator I γ is bounded on Lebesgue spaces and satisfies the size condition (12). Then, I γ from M K ˙ q 1 ( · ) α ( · ) , r ) , θ ( R n ) to M K ˙ q 2 ( · ) α ( · ) , r ) , θ ( R n ) .
Proof. 
Let f M K ˙ q 2 ( · ) α ( · ) , p ) , θ ( R n ) , and f ( z 1 ) = Σ l = f ( z 1 ) χ l ( z 1 ) = Σ l = f l ( z 1 ) , we have
I γ f M K ˙ q 2 ( · ) α ( · ) , p , θ ( R n ) = sup δ > 0 sup k o Z 2 k 0 λ δ θ k Z 2 k α ( · ) r ( 1 + δ ) χ k I γ f L q 2 ( · ) ( R n ) r ( 1 + δ ) 1 r ( 1 + δ ) sup δ > 0 sup k o Z 2 k 0 λ δ θ k Z 2 k α ( · ) r ( 1 + δ ) l = χ k I γ f ( χ l ) L q 2 ( · ) ( R n ) r ( 1 + δ ) 1 r ( 1 + δ ) sup δ > 0 sup k o Z 2 k 0 λ δ θ k Z 2 k α ( · ) r ( 1 + δ ) l = k 2 χ k I γ ( f χ l ) L q 2 ( · ) ( R n ) r ( 1 + δ ) 1 r ( 1 + δ ) + sup δ > 0 sup k o Z 2 k 0 λ δ θ k Z 2 k α ( · ) r ( 1 + δ ) l = k 1 k + 1 χ k I γ ( f χ l ) L q 2 ( · ) ( R n ) r ( 1 + δ ) 1 r ( 1 + δ ) + sup δ > 0 sup k o Z 2 k 0 λ δ θ k Z 2 k α ( · ) r ( 1 + δ ) l = k + 2 χ k I γ ( f χ l ) L q 2 ( · ) ( R n ) r ( 1 + δ ) 1 r ( 1 + δ ) = E 1 + E 2 + E 3 .
As operator I γ is bounded on the Lebesgue space L q 2 ( · ) ( R n ) so for E 2 ,
E 2 sup δ > 0 sup k o Z 2 k 0 λ δ θ k Z 2 k α ( · ) r ( 1 + δ ) l = k 1 k + 1 I γ ( f χ l ) L q 2 ( · ) ( R n ) r ( 1 + δ ) 1 r ( 1 + δ ) sup δ > 0 sup k o Z 2 k 0 λ δ θ k = 1 2 k α ( · ) r ( 1 + δ ) l = k 1 k + 1 I γ ( f χ l ) L q 2 ( · ) ( R n ) r ( 1 + δ ) 1 r ( 1 + δ ) + sup δ > 0 sup k o Z 2 k 0 λ δ θ k = 0 2 k α ( · ) r ( 1 + δ ) l = k 1 k + 1 I γ ( f χ l ) L q 2 ( · ) ( R n ) r ( 1 + δ ) 1 r ( 1 + δ ) = E 21 + E 22 .
By using the fact 2 k α ( z 1 ) = 2 k α ( 0 ) , k < 0 , z 1 R k implies that
2 k α ( · ) f χ k L q 1 ( · ) ( R n ) = 2 k α ( 0 ) f χ k L q 1 ( · ) ( R n ) ,
E 21 sup δ > 0 sup k o Z 2 k 0 λ δ θ k = 1 2 k α ( · ) r ( 1 + δ ) l = k 1 k + 1 I γ ( f χ l ) L q 2 ( · ) ( R n ) r ( 1 + δ ) 1 r ( 1 + δ ) C sup δ > 0 sup k o Z 2 k 0 λ δ θ k = 1 2 k α ( 0 ) r ( 1 + δ ) l = k 1 k + 1 f χ l L q 1 ( · ) ( R n ) r ( 1 + δ ) 1 r ( 1 + δ ) C sup δ > 0 sup k o Z 2 k 0 λ δ θ k = 1 2 k α ( 0 ) r ( 1 + δ ) f χ k L q 1 ( · ) ( R n ) r ( 1 + δ ) 1 r ( 1 + δ ) C sup δ > 0 sup k o Z 2 k 0 λ δ θ k Z 2 k α ( · ) r ( 1 + δ ) f χ k L q 1 ( · ) ( R n ) r ( 1 + δ ) 1 r ( 1 + δ ) = C f M K ˙ q 1 ( · ) α ( · ) , r ) , θ ( R n ) .
For E 22 , we use the fact 2 k α ( z 1 ) = 2 k α , k 0 , z 1 R k , we obtain
E 22 sup δ > 0 sup k o Z 2 k 0 λ δ θ k = 0 2 k α ( · ) r ( 1 + δ ) l = k 1 k + 1 I γ ( f χ l ) L q 2 ( · ) ( R n ) r ( 1 + δ ) 1 r ( 1 + δ ) C sup δ > 0 sup k o Z 2 k 0 λ δ θ k = 0 2 k α r ( 1 + δ ) l = k 1 k + 1 f χ l L q 1 ( · ) ( R n ) r ( 1 + δ ) 1 r ( 1 + δ ) C sup δ > 0 sup k o Z 2 k 0 λ δ θ k = 0 2 k α r ( 1 + δ ) f χ k L q 1 ( · ) ( R n ) r ( 1 + δ ) 1 r ( 1 + δ ) C sup δ > 0 sup k o Z 2 k 0 λ δ θ k Z 2 k α ( · ) r ( 1 + δ ) f χ k L q 1 ( · ) ( R n ) r ( 1 + δ ) 1 r ( 1 + δ ) = C f M K ˙ q 1 ( · ) α ( · ) , r ) , θ ( R n ) .
For each k Z and l k 2 and a.e. z 1 R k , z 2 R l , we have
E 1 sup δ > 0 sup k o Z 2 k 0 λ δ θ k Z 2 k α ( · ) r ( 1 + δ ) l = k 2 χ k I γ ( f χ l ) L q 2 ( · ) ( R n ) r ( 1 + δ ) 1 r ( 1 + δ )
| I γ ( f χ l ) ( z 1 ) | R l | z 1 z 2 | γ n | f ( z 2 ) | d z 2 C 2 k ( γ n ) R l | f ( z 2 ) | d z 2 C 2 k ( γ n ) f χ l L q 1 ( · ) ( R n ) χ l L q 1 ( · ) ( R n ) ,
splitting E 1 by using Minkowski’s inequality we have
E 1 sup δ > 0 sup k o Z 2 k 0 λ δ θ k = 1 2 k α ( · ) r ( 1 + δ ) l = k 2 χ k I γ ( f χ l ) L q 2 ( · ) ( R n ) r ( 1 + δ ) 1 r ( 1 + δ ) + sup δ > 0 sup k o Z 2 k 0 λ δ θ k = 0 2 k α ( · ) r ( 1 + δ ) l = k 2 χ k I γ ( f χ l ) L q 2 ( · ) ( R n ) r ( 1 + δ ) 1 r ( 1 + δ ) = E 11 + E 12 .
By using Lemma 1, we have
2 k ( γ n ) χ k L q 2 ( · ) ( R n ) χ l L q 1 ( · ) ( R n ) C 2 k ( γ n ) 2 k n q 2 ( 0 ) 2 l n q 1 ( 0 ) C 2 ( l k ) n q 1 ( 0 ) ,
applying above estimates to E 11 , we can obtain
E 11 sup δ > 0 sup k o Z 2 k 0 λ δ θ k = 1 2 k α ( · ) r ( 1 + δ ) l = k 2 χ k I γ ( f χ l ) L q 2 ( · ) ( R n ) r ( 1 + δ ) 1 r ( 1 + δ ) C sup δ > 0 sup k o Z 2 k 0 λ [ δ θ k = 1 2 k α ( · ) r ( 1 + δ ) l = k 2 χ k L q 2 ( · ) ( R n ) 2 k ( γ n ) f χ l L q 1 ( · ) ( R n ) χ l L q 1 ( · ) ( R n ) r ( 1 + δ ) ] 1 r ( 1 + δ ) ,
let b = n q 1 ( 0 ) α ( 0 ) ,
E 11 C sup δ > 0 sup k o Z 2 k 0 λ [ δ θ k = 1 l = k 2 2 α ( 0 ) l f χ l L q 1 ( · ) ( R n ) 2 b ( l k ) r ( 1 + δ ) ] 1 r ( 1 + δ ) ,
by using Hölder’s inequality, Fubini’s theorem and the inequality 2 r ( 1 + δ ) < 2 r , we obtain
E 11 C sup δ > 0 sup k o Z 2 k 0 λ [ δ θ k = 1 l = k 2 2 α ( 0 ) r ( 1 + δ ) l f χ l L q 1 ( · ) ( R n ) r ( 1 + δ ) 2 b r ( 1 + δ ) ( l k ) / 2 × l = k 2 2 b r ( 1 + δ ) ( l k ) / 2 r ( 1 + δ ) r ( 1 + δ ) ] 1 r ( 1 + δ ) = C sup δ > 0 sup k o Z 2 k 0 λ δ θ k = 1 l = k 2 2 α ( 0 ) r ( 1 + δ ) l f χ l L q 1 ( · ) ( R n ) r ( 1 + δ ) 2 b r ( 1 + δ ) ( l k ) / 2 1 r ( 1 + δ ) = C sup δ > 0 sup k o Z 2 k 0 λ δ θ l = 1 2 α ( 0 ) r ( 1 + δ ) l f χ l L q 1 ( · ) ( R n ) r ( 1 + δ ) k = l + 2 1 2 b r ( 1 + δ ) ( l k ) / 2 1 r ( 1 + δ ) < C sup δ > 0 sup k o Z 2 k 0 λ δ θ l = 1 2 α ( 0 ) r ( 1 + δ ) l f χ l L q 1 ( · ) ( R n ) r ( 1 + δ ) k = l + 2 1 2 b p ( l k ) / 2 1 r ( 1 + δ ) C sup δ > 0 sup k o Z 2 k 0 λ δ θ l = 1 2 α ( 0 ) r ( 1 + δ ) l f χ l L q 1 ( · ) ( R n ) r ( 1 + δ ) 1 r ( 1 + δ ) = C sup δ > 0 sup k o Z 2 k 0 λ δ θ l Z 2 α ( · ) r ( 1 + δ ) l f χ l L q 1 ( · ) ( R n ) r ( 1 + δ ) 1 r ( 1 + δ ) C f M K ˙ q 1 ( · ) α , r ) , θ ( R n ) .
Now, for E 12 using Minkowski’s inequality, we have
E 12 sup δ > 0 sup k o Z 2 k 0 λ δ θ k = 0 2 k α ( · ) r ( 1 + δ ) l = 1 χ k I γ ( f χ l ) L q 2 ( · ) ( R n ) r ( 1 + δ ) 1 r ( 1 + δ ) + sup δ > 0 sup k o Z 2 k 0 λ δ θ k = 0 2 k α ( · ) r ( 1 + δ ) l = 0 k 2 χ k I γ ( f χ l ) L q 2 ( · ) ( R n ) r ( 1 + δ ) 1 r ( 1 + δ ) = A 1 + A 2 .
The estimate for A 2 can be obtained by similar way to E 11 by replacing q 1 ( 0 ) with q 1 and using the fact n q 1 α > 0 . For A 1 using Lemma 1, we obtain
2 k ( γ n ) χ k L q 2 ( · ) ( R n ) χ l L q 1 ( · ) ( R n ) C 2 k ( γ n ) 2 k n q 2 2 l n q 1 ( 0 ) C 2 k n q 1 2 l n q 1 ( 0 ) ,
as α n q 1 < 0 , we have
A 1 C sup δ > 0 sup k o Z 2 k 0 λ δ θ k = 0 2 k α r ( 1 + δ ) l = 1 χ k I γ ( f χ l ) L q 2 ( · ) ( R n ) r ( 1 + δ ) 1 r ( 1 + δ ) C sup ϵ > 0 [ δ θ k = 0 2 k α r ( 1 + δ ) × l = 1 2 k n q 1 2 l n q 1 ( 0 ) f χ l L q 1 ( · ) ( R n ) r ( 1 + δ ) ] 1 r ( 1 + δ ) C sup δ > 0 sup k o Z 2 k 0 λ [ δ θ k = 0 2 ( k α k n / q 1 ) r ( 1 + δ ) × l = 1 2 l n q 1 ( 0 ) f χ l L q 1 ( · ) ( R n ) r ( 1 + δ ) ] 1 r ( 1 + δ ) C sup δ > 0 sup k o Z 2 k 0 λ δ θ l = 1 2 l n q ( 0 ) f χ l L q 1 ( · ) ( R n ) r ( 1 + δ ) 1 r ( 1 + δ ) C sup δ > 0 sup k o Z 2 k 0 λ δ θ l = 1 2 l n q 1 ( 0 ) α ( 0 ) l f χ l L q 1 ( · ) ( R n ) 2 α ( 0 ) l r ( 1 + δ ) 1 r ( 1 + δ ) .
Now, by using Hölder’s inequality and the fact n q 1 ( 0 ) α ( 0 ) > 0 , we have
A 1 sup δ > 0 sup k o Z 2 k 0 λ δ θ l = 1 2 l n q 1 ( 0 ) α ( 0 ) l f χ l L q 1 ( · ) ( R n ) 2 α ( 0 ) l r ( 1 + δ ) 1 r ( 1 + δ ) C sup δ > 0 sup k o Z 2 k 0 λ [ δ θ l = 1 2 α ( 0 ) l r ( 1 + δ ) f χ l L q 1 ( · ) ( R n ) r ( 1 + δ ) × l = 1 2 ( l n q 1 ( 0 ) α ( 0 ) l ) r ( 1 + δ ) r ( 1 + δ ) r ( 1 + δ ) ] 1 r ( 1 + δ ) C sup δ > 0 sup k o Z 2 k 0 λ δ θ l Z 2 α ( · ) l r ( 1 + δ ) f χ l L q 1 ( · ) ( R n ) r ( 1 + δ ) 1 r ( 1 + δ ) C f M K ˙ q 1 ( · ) α ( · ) , r ) , θ ( R n ) .
Now, we estimate E 3 , for every k Z and l k + 2 and a.e. z 1 R k ; the size condition and Hölder’s inequality imply
| I γ ( f χ l ) ( z 1 ) | R l | z 1 z 2 | n | f ( z 2 ) | d z 2 C 2 l ( γ n ) R l | f ( z 2 ) | d z 2 C 2 l ( γ n ) f χ l L q 1 ( · ) ( R n ) χ l L q 1 ( · ) ( R n ) ,
splitting E 3 by applying the Minkowski’s inequality we have
E 3 C sup δ > 0 sup k o Z 2 k 0 λ δ θ k Z 2 k α ( · ) r ( 1 + δ ) l = k + 2 χ k I γ ( f χ l ) L q 2 ( · ) ( R n ) r ( 1 + δ ) 1 r ( 1 + δ ) C sup δ > 0 sup k o Z 2 k 0 λ δ θ k = 1 2 k α ( · ) r ( 1 + δ ) l = k + 2 χ k I γ ( f χ l ) L q 2 ( · ) ( R n ) r ( 1 + δ ) 1 r ( 1 + δ ) + C sup δ > 0 sup k o Z 2 k 0 λ δ θ k = 0 2 k α ( · ) r ( 1 + δ ) l = k + 2 χ k I γ ( f χ l ) L q 2 ( · ) ( R n ) r ( 1 + δ ) 1 r ( 1 + δ ) = E 31 + E 32 .
For E 32 Lemma 1 yields
2 l ( γ n ) χ k L q 2 ( · ) ( R n ) χ l L q 1 ( · ) ( R n ) C 2 l ( γ n ) 2 k n q 2 2 l n q 1 C 2 ( k l ) n q 1 ,
we get
E 32 sup δ > 0 sup k o Z 2 k 0 λ δ θ k = 0 2 k α ( · ) r ( 1 + δ ) l = k + 2 χ k I γ ( f χ l ) L q 2 ( · ) ( R n ) r ( 1 + δ ) 1 r ( 1 + δ ) C sup δ > 0 sup k o Z 2 k 0 λ [ δ θ k = 0 2 k α ( · ) r ( 1 + δ ) l = k + 2 χ k L q 2 ( · ) ( R n ) 2 l ( γ n ) · f χ l L q 1 ( · ) ( R n ) χ l L q 1 ( · ) ( R n ) r ( 1 + δ ) ] 1 r ( 1 + δ ) C sup δ > 0 sup k o Z 2 k 0 λ δ θ k = 0 l = k + 2 2 ( α ) l f χ l L q 1 ( · ) ( R n ) 2 d ( k l ) r ( 1 + δ ) 1 r ( 1 + δ ) ,
where d = n q 1 + α > 0 . Then, we use Hölder’s theorem for series and 2 r ( 1 + δ ) < 2 r to obtain
E 32 C sup δ > 0 sup k o Z 2 k 0 λ [ δ θ k = 0 l = k + 2 2 l ( α ) r ( 1 + δ ) f χ l L q 1 ( · ) ( R n ) r ( 1 + δ ) 2 d r ( 1 + δ ) ( k l ) / 2 × l = k + 2 2 d r ( 1 + δ ) ( k l ) / 2 r ( 1 + δ ) r ( 1 + δ ) ] 1 r ( 1 + δ ) C sup δ > 0 sup k o Z 2 k 0 λ δ θ k = 0 l = k + 2 2 l ( α ) r ( 1 + δ ) f χ l L q 1 ( · ) ( R n ) r ( 1 + δ ) 2 d r ( 1 + δ ) ( k l ) / 2 1 r ( 1 + δ ) C sup δ > 0 sup k o Z 2 k 0 λ δ θ l = 0 2 l ( α ) r ( 1 + δ ) f χ l L q 1 ( · ) ( R n ) r ( 1 + δ ) k = 0 l 2 2 d r ( 1 + δ ) ( k l ) / 2 1 r ( 1 + δ ) < C sup δ > 0 sup k o Z 2 k 0 λ δ θ l Z 2 l ( α ) r ( 1 + δ ) f χ l L q 1 ( · ) ( R n ) r ( 1 + δ ) k = l 2 2 d p ( k l ) / 2 1 r ( 1 + δ ) C sup δ > 0 sup k o Z 2 k 0 λ δ θ l Z 2 α ( · ) r ( 1 + δ ) l f χ l L q 1 ( · ) ( R n ) r ( 1 + δ ) 1 r ( 1 + δ ) C f M K ˙ λ , q 1 ( · ) α ( · ) , r ) , θ ( R n ) .
Now, for E 31 using Monkowski’s inequality, we have
E 31 sup δ > 0 sup k o Z 2 k 0 λ δ θ k = 1 2 k α ( · ) r ( 1 + δ ) l = k + 2 1 χ k I γ ( f χ l ) L q 2 ( · ) ( R n ) r ( 1 + δ ) 1 r ( 1 + δ ) + sup δ > 0 sup k o Z 2 k 0 λ δ θ k = 1 2 k α ( · ) r ( 1 + δ ) l = 0 χ k I γ ( f χ l ) L q 2 ( · ) ( R n ) r ( 1 + δ ) 1 r ( 1 + δ ) = B 1 + B 2 .
The estimate for B 1 can be obtained similar to E 32 by replacing q 1 with q 1 ( 0 ) and applying the fact that n q 1 ( 0 ) + α ( 0 ) > 0 . For B 2 using Lemma 1, we obtain
2 l ( γ n ) χ k L q 2 ( · ) ( R n ) χ l L q ( · ) ( R n ) C 2 l ( γ n ) 2 k n q 2 ( 0 ) 2 l n q 1 C 2 k n q 1 ( 0 ) 2 l ( n ) q 1
B 2 C sup δ > 0 sup k o Z 2 k 0 λ δ θ k = 1 2 k α ( 0 ) r ( 1 + δ ) l = 0 χ k I γ ( f χ l ) L q 2 ( · ) ( R n ) r ( 1 + δ ) 1 r ( 1 + δ ) C sup δ > 0 sup k o Z 2 k 0 λ δ θ k = 1 2 k α ( 0 ) r ( 1 + δ ) × l = 0 2 l ( γ n ) 2 k n q 1 ( 0 ) 2 l n q 1 f χ l L q 1 ( · ) ( R n ) r ( 1 + δ ) 1 r ( 1 + δ ) C sup δ > 0 sup k o Z 2 k 0 λ δ θ k = 1 2 k α ( 0 ) r ( 1 + δ ) × l = 0 2 k n q 1 ( 0 ) 2 γ l 2 l n q 1 f χ l L q 1 ( · ) ( R n ) r ( 1 + δ ) 1 r ( 1 + δ ) C sup δ > 0 sup k o Z 2 k 0 λ δ θ k = 1 2 k ( α ( 0 ) + n ) / q 1 ( 0 ) r ( 1 + δ ) × l = 0 2 γ l 2 l n q 1 f χ l L q 1 ( · ) ( R n ) r ( 1 + δ ) 1 r ( 1 + δ ) C sup δ > 0 sup k o Z 2 k 0 λ δ θ l = 0 2 γ l 2 l n q 1 f χ l L q 1 ( · ) ( R n ) r ( 1 + δ ) 1 r ( 1 + δ ) C sup δ > 0 sup k o Z 2 k 0 λ δ θ l = 0 2 l ( α ) f χ l L q 1 ( · ) ( R n ) 2 l ( n q 1 + α ) r ( 1 + δ ) 1 r ( 1 + δ ) .
Now, by using Hölder’s inequality and the fact that n q + α > 0 , we have
B 2 sup δ > 0 sup k o Z 2 k 0 λ δ θ l = 0 2 2 l ( α ) r ( 1 + δ ) f χ l L q 1 ( · ) ( R n ) r ( 1 + δ ) r ( 1 + δ ) × l = 0 2 l ( n q 1 + α ) r ( 1 + δ ) r ( 1 + δ ) r ( 1 + δ ) 1 r ( 1 + δ ) C sup δ > 0 sup k o Z 2 k 0 λ δ θ l Z 2 l ( α ) r ( 1 + δ ) f χ l L q 1 ( · ) ( R n ) r ( 1 + δ ) 1 r ( 1 + δ ) C f M K ˙ λ , q 1 ( · ) α ( · ) , r ) , θ ( R n )
Combining the estimates for E 1 , E 2 and E 3 yields
I γ f M K ˙ λ , q 2 ( · ) α ( · ) , r ) , θ ( R n ) C f M K ˙ λ , q 1 ( · ) α ( · ) , r ) , θ ( R n )

5. Conclusions

We have defined a new type of space called variable exponents grand Herz–Morrey spaces, where we used discrete grand spaces, and we have proved the boundedness of the Riesz potential operator on these spaces.

Author Contributions

B.S.: methodology, writing—original draft; F.A.: writing—original draft, methodology; M.S.: conceptualization, supervision, writing—original draft; M.M.: conceptualization, writing–original draft; N.M.: conceptualization, supervision, writing—original draft. All authors read and approved the final manuscript.

Funding

This research received no external funding.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

Not applicable.

Acknowledgments

The authors F. Azmi and N. Mlaiki would like to thank Prince Sultan University for paying the publication fees for this work through TAS LAB.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Ruzicka, M. Electroreological Fluids: Modeling and Mathematical Theory; Lecture Notes in Math; Springer: Berlin/Heidelberg, Germany, 2000; Volume 1748. [Google Scholar]
  2. Uribe, D.C.; Fiorenza, A. Variable Lebesgue Space: Foundations and Harmonic Analysis; Birkhauser: Basel, Switzerland, 2013. [Google Scholar]
  3. Diening, L.; Harjulehto, P.; Hästö, P.; Ruzicka, M. Lebesgue and Sobolev Spaces with Variable Exponents; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
  4. Diening, L.; Hästö, P.; Nekvinda, A. Open Problems in Variable Exponent Lebesgue and Sobolev Spaces. FSDONA04 Proceedings. 2004, pp. 38–58. Available online: https://www.researchgate.net/profile/Lars-Diening/publication/228831740_Open_problems_in_variable_exponent_Lebesgue_and_Sobolev_spaces/links/0deec532c292a0b151000000/Open-problems-in-variable-exponent-Lebesgue-and-Sobolev-spaces.pdf (accessed on 1 September 2022).
  5. Kokilashvili, V. On a progress in the theory of integral operators in weighted Banach function spaces. In Function Spaces, Differential Operators and Nonlinear Analysis; Mathematical Institute, Academy of Sciences of the Czech Republic: Praha, Czech Republic, 2004. [Google Scholar]
  6. Kokilashvili, V.; Samko, S. Weighted boundedness of the maximal, singular and potential operators in variable exponent spaces, In Analytic Methods of Analysis and Differential Equations; Kilbas, A.A., Rogosin, S.V., Eds.; Cambridge Scientific Publishers: Cottenham, UK, 2008; pp. 139–164. [Google Scholar]
  7. Samko, S. On a progress in the theory of Lebesgue spaces with variable exponent: Maximal and singular operators. Integral Transform. Spec. Funct. 2005, 16, 461–482. [Google Scholar] [CrossRef]
  8. Almeida, A.; Drihem, D. Maximal, potential and singular type operators on Herz spaces with variable exponents. J. Math. Anal. Appl. 2012, 394, 781–795. [Google Scholar] [CrossRef]
  9. Izuki, M. Boundedness of sublinear operators on Herz spaces with variable exponent and application to wavelet characterization. Anal. Math. 2010, 36, 33–50. [Google Scholar] [CrossRef]
  10. Izuki, M. Boundedness of vector-valued sublinear operators on Herz-Morrey spaces with variable exponent. Math. Sci. Res. J. 2009, 13, 243–253. [Google Scholar]
  11. Samko, S. Variable exponent Herz spaces. Mediterr. J. Math. 2013, 10, 2007–2025. [Google Scholar] [CrossRef]
  12. Meskhi, A.; Rafeiro, H.; Zaighum, M.A. On the boundedness of Marcinkiewicz integrals on continual variable exponent Herz spaces. Georgian Math. J. 2019, 26, 105–116. [Google Scholar] [CrossRef]
  13. Rafeiro, H.; Samko, S. Riesz potential operator in continual variable eponents Herz spaces. Math. Nachr. 2015, 288, 465–475. [Google Scholar] [CrossRef]
  14. Morrey, C.B. On the solutions of quasi-linear elliptic partial differential equations. Trans. Am. Math. Soc. 1938, 43, 126–166. [Google Scholar] [CrossRef]
  15. Meskhi, A. Integral operators in grand Morrey spaces. arXiv 2010, arXiv:1007.1186. [Google Scholar]
  16. Izuki, M. Fractional integrals on Herz-Morrey spaces with variable exponent. Hiroshima Math. J. 2010, 40, 343–355. [Google Scholar] [CrossRef]
  17. Nafis, H.; Rafeiro, H.; Zaighum, M.A. A note on the boundedness of sublinear operators on grand variable Herz spaces. J. Inequal. Appl. 2020, 2020, 1. [Google Scholar] [CrossRef] [Green Version]
  18. Kováčik, O.; Rákosník, J. On spaces Lp(x) and Wk,p(x). Czechoslov. Math. J. 1991, 41, 592–618. [Google Scholar] [CrossRef]
  19. Rafeiro, H.; Samko, S.; Umarkhadzhiev, S. Grand Lebesgue sequence spaces. Georgian Math. J. 2018, 25, 291–302. [Google Scholar] [CrossRef]
  20. Samko, S.G. Convolution and potential type operators in Lp(x), Integr. Transf. Special Funct. 1998, 7, 261–284. [Google Scholar] [CrossRef]
  21. Capone, C.; Cruz-Uribe, D.; Fiorenza, A. The fractional maximal operator and fractional integrals on variable Lp spaces. Rev. Mat. Iberoam. 2007, 23, 743–770. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Sultan, B.; Azmi, F.; Sultan, M.; Mehmood, M.; Mlaiki, N. Boundedness of Riesz Potential Operator on Grand Herz-Morrey Spaces. Axioms 2022, 11, 583. https://doi.org/10.3390/axioms11110583

AMA Style

Sultan B, Azmi F, Sultan M, Mehmood M, Mlaiki N. Boundedness of Riesz Potential Operator on Grand Herz-Morrey Spaces. Axioms. 2022; 11(11):583. https://doi.org/10.3390/axioms11110583

Chicago/Turabian Style

Sultan, Babar, Fatima Azmi, Mehvish Sultan, Mazhar Mehmood, and Nabil Mlaiki. 2022. "Boundedness of Riesz Potential Operator on Grand Herz-Morrey Spaces" Axioms 11, no. 11: 583. https://doi.org/10.3390/axioms11110583

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop