Next Article in Journal
Edge Degree Conditions for 2-Iterated Line Graphs to Be Traceable
Previous Article in Journal
A Demand Side Management Control Strategy Using RUNge Kutta Optimizer (RUN)
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Set-Valued Variational Inclusion Governed by Generalized αiβj-Hp(., ., ...)-Accretive Mapping

by
Sanjeev Gupta
1,* and
Faizan Ahmad Khan
2,*
1
Department of Mathematics, Institute of Applied Sciences and Humanities, GLA University, Mathura 281406, India
2
Computational & Analytical and Their Applications Research Group, Department of Mathematics, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
*
Authors to whom correspondence should be addressed.
Axioms 2022, 11(10), 539; https://doi.org/10.3390/axioms11100539
Submission received: 30 July 2022 / Revised: 17 September 2022 / Accepted: 21 September 2022 / Published: 8 October 2022

Abstract

:
This work is concerned with the new notion called generalized α i β j - H p ( . ,   . ,   . . . ) -accretive mapping that is the sum of two symmetric accretive mappings. It is an extension of the generalized α β - H ( . ,   . ) -accretive mapping. The proximal point mapping linked to the generalized α i β j - H p ( . ,   . ,   . . . ) -accretive mappings is defined, and some of its characteristics are discussed. As an application of the new proximal point mapping, we consider a set-valued variational inclusion problem in q-uniformly smooth Banach spaces. Further, we propose an iterative scheme connected with α i β j - H p ( . ,   . ,   . . . ) -proximal point mapping to find the solution of a variational inclusion problem and discuss its convergence criteria under appropriate assumptions. Some examples are constructed in support of generalized α i β j - H p ( . ,   . ,   . . . ) -accretive mappings.

1. Introduction and Preliminaries

Variational inequality is a very powerful tool to study a large variety of problems that appear in electricity, mechanics, operation research, optimal control, etc. The projection mapping techniques, shrinking projection mapping techniques, CQ methods, and proximal-point mapping techniques have been widely used to solve variational inequality (inclusions) problems, see [1,2,3,4,5,6,7,8,9]. The accretive property of the underlying proximal-point mapping has a significant role in the field of variational inequalities and their generalizations. Huang and Fang [10] were the first to consider and study m-accretive mappings and related proximal-point mappings in Banach spaces. After that, many researchers introduced and studied different kinds of generalized m-accretive mappings, see [1,4,5,6]. Sun et al. [7] proposed and analyzed M-monotone mappings in Hilbert spaces. A few research works linked to the M-monotone are provided in [3,9].
In particular, the investigation of H ( . ,   . ) -accretive mappings has been very deeply carried out, and there have been many important results on the variational inclusions (or inequalities) for their related mappings, e.g., the characterization of H ( . ,   . ) -monotone operators with applications to variational inclusions [11], the generalized nonlinear set-valued mixed quasi-variational inequalities [12], and the completely generalized set-valued quasi-variational inclusions [13].
In recent years, H ( . ,   . ) -accretive mappings and generalized α β - H ( . ,   . ) -accretive mappings have been investigated and studied by many researchers, see for example, [3,9,14]. Very recently, Nazemi [15] investigated and studied C n -monotone mappings, and Guan and Hu [16] considered C n - η -monotone mappings in Banach spaces and studied some classes of variational inclusions involving these mappings.
Impelled by the ongoing research work presented above, in this paper we consider the generalized α i β j - H p ( . ,   . ,   . . . ) -accretive mapping defined on a product set, which is the sum of two symmetric accretive mappings. This notion is a generalized form of generalized α β - H p ( . ,   . ) -accretive mapping et al. [3], which is done with the idea of C n monotone mapping studied and analyzed by Nazemi [15]. We define the proximal-point mapping associated with the generalized α i β j - H p ( . ,   . ,   . . . ) -accretive mappings and prove that it is single-valued and Lipschitz continuous. An iterative algorithm involving a generalized α i β j - H p ( . ,   . ,   . . . ) -accretive mapping is constructed. We perform the convergence part of an iterative algorithm for the solution of set-valued variational inclusion problems with some suitable assumptions in the setting of q-uniformly smooth Banach spaces. Some examples are constructed in support of generalized α i β j - H p ( . ,   . ,   . . . ) -accretive mappings. Using the generalized α i β j - H p ( . ,   . ,   . . . ) -accretive mapping technique described in this paper, one can extend and improve the results given in [3,9,14,15,16,17,18,19,20,21,22,23,24].
Let Y be a real Banach space endowed with the norm . and an inner product . ,   . , which presents the generalized duality pairing between Y and Y * . Let C B ( Y ) be the family of all nonempty closed and bounded subsets of Y and 2 Y be the power set of of Y. We set Yp = p   t i m e s Y × Y × . . . × Y .
Definition 1
([25]). The generalized duality mapping j q : Y 2 Y * is defined by
j q ( z ) = { z ˜ Y * : z , z ˜ = z q , z ˜ = z q 1 } , z Y ,
where q > 1 is a constant. In particular, j 2 is the usual normalized duality mapping. It is known that, in general, j q ( z ) = z q 1 j ( z ) , z Y . If Y is equivalent to real Hilbert space X, then j 2 becomes an identity mapping on X.
Definition 2
([25]). A Banach space Y is smooth if, for every z Y with z = 1 , there exists a unique l Y * such that l = l ( z ) = 1 .
Definition 3
([25]). Let Ω Y : [ 0 , ) [ 0 , ) be a mapping; then, the modulus of smoothness of Y at μ is defined by
Ω Y ( μ ) = sup z + z ˜ + z z ˜ 2 1 : z 1 , z ˜ μ .
Definition 4
([25]). A Banach space Y is said to be
(i)
uniformly smooth if lim μ 0 Ω Y ( μ ) μ = 0 ;
(ii)
q-uniformly smooth ( q > 1 ) , ∃ k > 0 with Ω Y ( μ ) k μ q , μ [ 0 , ) .
It is observed that j q is single-valued if Y is uniformly smooth.
Lemma 1
([25]). A real uniformly smooth Banach space Y is q-uniformly smooth if and only if there exists a constant c q > 0 such that, for every z , z ˜ Y ,
z + z ˜ q z q + q z ˜ , j q ( z ) + c q z ˜ q .
The following new notions are needed to continue subsequent sections.
Definition 5.
For i { 1 , 2 , . . . , p } , p 3 , let H p : Y p Y be a mapping and A i : Y Y be a single-valued mapping. Then, H p is said to be
(i)
α i -strongly accretive with A i if there exists α i > 0 such that
H p ( v 1 , . . . , v i 1 , A i w ˜ , v i + 1 , . . . , v n ) H p ( v 1 , . . . , v i 1 , A i v ˜ , v i + 1 , . . . , v n ) , J q ( w ˜ v ˜ ) α i w ˜ v ˜ q , w ˜ , v ˜ , v 1 , . . . , v i 1 , v i + 1 , . . . , v n Y ;
(ii)
β i -relaxed accretive with A i if there exists β i > 0 such that
H p ( v 1 , . . . , v i 1 , A i w ˜ , v i + 1 , . . . , v n ) H p ( v 1 , . . . , v i 1 , A i v ˜ , v i + 1 , . . . , v n ) , J q ( w ˜ v ˜ ) β i w ˜ v ˜ q , w ˜ , v ˜ , v 1 , . . . , v i 1 , v i + 1 , . . . , v n Y ;
(iii)
s i -Lipschitz continuous with A i if there exists s i > 0 such that
H p ( v 1 , . . . , v i 1 , A i w ˜ , v i + 1 , . . . , v n ) H p ( v 1 , . . . , v i 1 , A i v ˜ , v i + 1 , . . . , v n ) s i w ˜ v ˜ , w ˜ , v ˜ , v 1 , . . . , v i 1 , v i + 1 , . . . , v n Y ;
(iv)
α 1 β 2 α 3 β 4 . . . α p 1 β p -symmetric accretive with A 1 , A 2 , . . . , A p if and only if, for i { 1 , 3 , . . . , p 1 } , H p ( . . . , A i , . . . ) is α i -strongly accretive with A i , and for j { 2 , 4 , . . . , p } , H p ( . . . , A j , . . . ) is β j -relaxed accretive with A j , where p is even, satisfying
β 2 + β 4 + . . . + β p α 1 + α 3 + . . . + α p 1
and β 2 + β 4 + . . . + β p = α 1 + α 3 + . . . + α p 1 if and only if w ˜ = v ˜ ;
(v)
α 1 β 2 α 3 β 4 , . . . β p 1 , α p -symmetric accretive with A 1 , A 2 , . . . , A p if and only if, for i { 1 , 3 , . . . , p } ,
H p ( . . . , A i , . . . ) is α i -strongly accretive with A i , and for j { 2 , 4 , . . . , p 1 } , H p ( . . . , A j , . . . ) is β j -relaxed accretive A j where p is odd, satisfying
β 2 + β 4 + . . . + β p 1 α 1 + α 3 + . . . + α p
and β 2 + β 4 + . . . + β p 1 = α 1 + α 3 + . . . + α p iff w ˜ = v ˜ .
Definition 6.
For i { 1 , 2 , . . . , p } , p 3 , let N : Y p 2 Y be a set-valued mapping and f i : Y Y be a single-valued mapping. Then, N is said to be
(i)
μ ¯ i -strongly accretive with f i if there exists μ ¯ i > 0 such that
w ˜ i v ˜ i , J q ( w ˜ v ˜ ) μ ¯ i w ˜ v ˜ q , w ˜ , v ˜ , v 1 , . . . , v i 1 , v i + 1 , . . . , v p Y , w ˜ i N ( v 1 , . . . , v i 1 , f i ( w ˜ ) , v i + 1 , . . . , v n ) , v ˜ i N ( v 1 , . . . , v i 1 , f i ( v ˜ ) , v i + 1 , . . . , v n ) ;
(ii)
γ ¯ i -relaxed accretive with f i if there exists γ ¯ i > 0 such that
w ˜ i v ˜ i , J q ( w ˜ v ˜ ) γ ¯ i w ˜ v ˜ q , w ˜ , v ˜ , v 1 , . . . , v i 1 , v i + 1 , . . . , v p Y , w ˜ i N ( v 1 , . . . , v i 1 , f i ( w ˜ ) , v i + 1 , . . . , v n ) , v ˜ i N ( v 1 , . . . , v i 1 , f i ( v ˜ ) , v i + 1 , . . . v n ) ;
(iii)
μ ¯ 1 γ ¯ 2 μ ¯ 3 γ ¯ 4 . . . μ ¯ p 1 γ ¯ p -symmetric accretive with f 1 , f 2 , . . . , f p if and only if, for i { 1 , 3 , . . . , p 1 } , N ( . . . , f i , . . . ) is μ ¯ i -strongly accretive with f i , and for j { 2 , 4 , . . . , p } , N ( . . . , f j , . . . ) is γ ¯ j -relaxed accretive with f j , where p is even, satisfying
γ ¯ 2 + γ ¯ 4 + . . . + γ ¯ p μ ¯ 1 + μ ¯ 3 + . . . + μ ¯ p 1
and γ ¯ 2 + γ ¯ 4 + . . . + γ ¯ p = μ ¯ 1 + μ ¯ 3 + . . . + μ ¯ p 1 iff w ˜ = v ˜ ;
(iv)
μ ¯ 1 γ ¯ 2 μ ¯ 3 γ ¯ 4 , . . . μ ¯ p , γ ¯ p 1 -symmetric accretive with f 1 , f 2 , . . . , f p if and only if, for i { 1 , 3 , . . . , p } , N ( . . . , f i , . . . ) is μ ¯ i -strongly accretive with f i , and for j { 2 , 4 , . . . , p 1 } , N ( . . . , f j , . . . ) is γ ¯ j -relaxed accretive with f j , where p is odd, satisfying
γ ¯ 2 + γ ¯ 4 + . . . + γ ¯ p 1 μ ¯ 1 + μ ¯ 3 + . . . + μ ¯ p
and γ ¯ 2 + γ ¯ 4 + . . . + γ ¯ p 1 = μ ¯ 1 + μ ¯ 3 + . . . + μ ¯ p if and only if w ˜ = v ˜ .
Definition 7.
For i { 1 , 2 , . . . , p } , p 3 , let N : Y p 2 Y , S i : Y 2 Y be set-valued mappings, H p , F : Y p Y be mappings, and A i : Y Y be single-valued mappings; then, F is said to be
(i)
α ¯ i -strongly accretive with S i and H p in the i t h -argument if there exists α ¯ i > 0 such that
F ( . . . , w i , . . . ) F ( . . . , v i , . . . ) , J q ( H p ( A 1 w 1 , . . . , A p w p ) H p ( A 1 v 1 , . . . , A p v p ) ) α ¯ i H p ( A 1 w 1 , . . . , A p w p ) H p ( A 1 v 1 , . . . , A p v p q , w 1 , w 2 . . . , w p , v 1 , v 2 , . . . , v p Y , w i S ( w i ) , v i S ( v i ) ;
(ii)
l i -Lipschitz continuous in the i t h -argument if there exists l i > 0 such that
F ( v 1 , . . , v i 1 , w ˜ , v i + 1 . . . v p ) F ( v 1 , . . , v i 1 , v ˜ , v i + 1 . . . v p ) l i w ˜ v ˜ , w ˜ , v ˜ , v 1 , . . , v i 1 , v i + 1 . . . v p Y .

2. Generalized αiβj-Hp ( . ,   . ,   . . . ,   . ) Accretive Mappings

At first, we consider some assumptions ( M 1 - M 4 ) to introduce and study the new notion generalized α i β j - H p ( . ,   . ,   . . . ,   . ) -accretive mappings.
For i { 1 , 2 , . . . , p } , p 3 , let N : Y p 2 Y be a set-valued mapping, H p : Y p Y be a mapping, and A i , f i : Y Y be single-valued mappings.
  • M 1 : If p is an even number, H p is α 1 β 2 α 3 β 4 . . . α p 1 β p -symmetric accretive with A 1 , A 2 , . . . , A p .
  • M 2 : If p is an odd number, H p is α 1 β 2 α 3 β 4 . . . β p 1 α p -symmetric accretive with A 1 , A 2 , . . . , A p .
  • M 3 : If p is an even number, N is μ ¯ 1 γ ¯ 2 μ ¯ 3 γ ¯ 4 . . . μ ¯ p 1 γ ¯ p -symmetric accretive with f 1 , f 2 , . . . , f p .
  • M 4 : If p is an odd number, N is μ ¯ 1 γ ¯ 2 μ ¯ 3 γ ¯ 4 . . . γ ¯ p 1 μ ¯ p -symmetric accretive with f 1 , f 2 , . . . , f p .
Definition 8.
Let p 3 ; then, N is said to be a generalized α i β j - H p ( . ,   . ,   . . . ,   . ) -accretive mapping with A 1 , A 2 , . . . , A p and f 1 , f 2 , . . . , f p
(i)
if and only if N is μ ¯ 1 γ ¯ 2 μ ¯ 3 γ ¯ 4 . . . μ ¯ p 1 γ ¯ p -symmetric accretive with f 1 , f 2 , . . . , f p (i.e., assumption M 3 holds), and ( H p ( A 1 , A 2 , . . . , A p ) + ρ N ( f 1 , f 2 , . . . , f p ) ) ( Y ) = Y , for all ρ > 0 , if p is an even number;
(ii)
if and only if N is μ ¯ 1 γ ¯ 2 μ ¯ 3 γ ¯ 4 . . . γ ¯ p 1 μ ¯ p -symmetric accretive with f 1 , f 2 , . . . , f n (i.e., assumption M 4 holds), and ( H p ( A 1 , A 2 , . . . , A p ) + ρ N ( f 1 , f 2 , . . . , f p ) ) ( Y ) = Y , for all ρ > 0 , if p is an odd number.
Example 1.
Let p be an even number and H p be α 1 β 2 α 3 β 4 . . . α p 1 β p -symmetric accretive with A 1 , A 2 , . . . , A p . Let f : Y R be a functional on Y; then, the vector x ˜ , such that
f ( z ) f ( y ) x ˜ , z y , z Y ,
where f ( z ) is finite for each z Y , is known as the subgradient of f at z. The collections of all such subgradients of f at z holding (1) are known as the subdifferential δ f ( z ) of f at z. Let f 1 , f 2 , . . . , f p : Y Y be locally Lipschitz functionals on Y such that subdifferential δ ( f 1 , f 2 , . . . , f p ) is μ ¯ 1 γ ¯ 2 μ ¯ 3 γ ¯ 4 . . . μ ¯ p 1 γ ¯ p -symmetric accretive with f 1 , f 2 , . . . , f p . Then, H p ( . , . , . . . ) + δ ( f 1 , f 2 , . . . , f p ) is L -strongly accretive, where L = α i + μ ¯ i β j + γ ¯ j > 0 ; equivalently, we can state that δ ( f 1 , f 2 , . . . , f p ) is a generalized α i β j - H p ( . , . , . . . ) -accretive mapping.
Example 2.
For each i { 1 , 2 , . . . , p } , p is an even number, and Y = R (see Appendix A). Let A i , f i : R R and H p : R p R be the mappings, which are defined as:
A 1 ( x ) = x 3 8 + 2 x 3 , A 3 ( x ) = x 3 8 + 2 x 3 , . . . . , A p 1 ( x ) = x 3 8 + 2 x 3 ; A 2 ( x ) = x 2 , A 4 ( x ) = x 2 , . . . , = A p ( x ) = x 2 ; f 1 ( x ) = x 4 , f 3 ( x ) = x 4 , . . . . , f p 1 ( x ) = x 4 ; f 2 ( x ) = 5 x 12 , f 4 ( x ) = 5 x 12 , . . . , = f p ( x ) = 5 x 12 ; H p ( A 1 ( x ) , A 2 ( x ) , . . . , A p ( x ) ) = A 1 ( x ) A 2 ( x ) + . . . + A p 1 ( x ) A p ( x )
such that the inequality x y + x 2 + y 2 > 0 is satisfied for all x R 2 .
Let N : R p 2 R be a set-valued mapping defined as:
N ( f 1 ( x ) , f 2 ( x ) , . . . , f p 1 ( x ) , f p ( x ) ) = f 1 ( x ) f 2 ( x ) + . . . + f p 1 ( x ) f p ( x ) .
Then, H p ( . , . , . , . . ) is 2 3 -strongly accretive with ( A 1 , A 3 , . . . , A p 1 ) and 3 2 -relaxed accretive with ( A 2 , A 4 , . . . , A p ) , and N is 1 4 -strongly accretive with ( f 1 , f 3 , . . . , f p 1 ) and 17 12 -relaxed accretive with ( A 2 , A 4 , . . . , A p ) .
One can easily verify the following for ρ = 1 :
[ H p ( A 1 , A 2 , . . . , A p ) + ρ N ( f 1 , f 2 , . . . , f p ) ] R = R .
Hence, N is a generalized α i β j - H p ( . , . , . . . ) -accretive mapping with ( A 1 , A 2 , . . . , A p ) and ( f 1 , f 2 , . . . , f p ) .
Proposition 1.
Let assumptions M 1 and M 2 hold for every i { 1 , 2 , . . . p } , p 3 , and let N : Y p 2 Y be a generalized α i β j - H p ( A 1 , A 2 , . . . , A p ) -accretive mapping with mappings ( A 1 , A 2 , . . . , A p ) and ( f 1 , f 2 , . . . , f p ) with μ ¯ i > γ ¯ j , α i > β j , if x ˜ y ˜ , J q ( u v ) 0 is satisfied for each ( v , y ˜ ) Gr ( N ( f 1 , f 2 , . . . , f p ) ) , x ˜ N ( f 1 , f 2 , . . . , f p ) ( u ) , where Gr ( N ( f 1 , f 2 , . . . , f p ) ) = { ( u , x ˜ ) : x ˜ N ( f 1 , f 2 , . . . , f p ) ( u ) } .
Proof. 
Assume that there exists ( w 0 , z 0 ) Gr ( N ( f 1 , f 2 , . . . , f p ) ) such that
z 0 x , J q ( w 0 u ) 0 , ( u , x ) Gr ( N ( f 1 , f 2 , . . . , f p ) ) .
If p is even: Since N is a generalized α i β j - H p ( A 1 , A 2 , . . . , A p ) -accretive mapping, then N is μ ¯ 1 γ ¯ 2 μ ¯ 3 γ ¯ 4 . . . μ ¯ p 1 γ ¯ p -symmetric accretive with f 1 , f 2 , . . . , f p , and ( H p ( A 1 , A 2 , . . . , A p ) + ρ N ( f 1 , f 2 , . . . , f p ) ) ( Y ) = Y holds for each ρ > 0 ; then, there exists ( w 1 , z 1 ) Gr ( N ( f 1 , f 2 , . . . , f p ) ) such that
H p ( A 1 w 0 , A 2 w 0 , . . . , A p w 0 ) + ρ z 0 = H p ( A 1 w 1 , A 2 w 1 , . . . , A p w 1 ) + ρ z 1 Y .
From (2) and (3), we have
ρ z 0 ρ z 1 = H p ( A 1 w 1 , A 2 w 1 , . . . , A p w 1 ) H p ( A 1 w 0 , A 2 w 0 , . . . , A p w 0 ) Y , ρ z 0 ρ z 1 , J q ( u 0 w 1 ) = H p ( A 1 w 1 , A 2 w 1 , . . . , A p w 1 ) H p ( A 1 w 0 , A 2 w 0 , . . . , A p w 0 ) , J q ( u 0 w 1 ) .
Setting ( u , x ) = ( w 1 , z 1 ) in (2) and using M 3 in (3), we obtain
[ ( μ ¯ 1 + μ ¯ 3 + . . . + μ ¯ p 1 ) ( γ ¯ 2 + γ ¯ 4 . . . + γ ¯ p ) ] w 0 w 1 q ρ z 0 z 1 , J q ( w 0 w 1 ) H p ( A 1 w 0 , A 2 w 0 , . . . , A p w 0 ) H p ( A 1 w 1 , A 2 w 1 , . . . , A p w 1 ) , J q ( w 0 w 1 ) = H p ( A 1 w 0 , A 2 w 0 , . . . , A p w 0 ) H p ( A 1 w 1 , A 2 w 0 , . . . , A p w 0 ) , J q ( w 0 w 1 ) H p ( A 1 w 0 , A 2 w 0 , . . . , A p w 0 ) H p ( A 1 w 0 , A 2 w 1 , . . . , A p w 0 ) , J q ( w 0 w 1 ) : : H p ( A 1 w 0 , A 2 w 0 , . . . , A p w 0 ) H p ( A 1 w 0 , A 2 w 0 , . . . , A p w 1 ) , J q ( w 0 w 1 ) [ α 1 w 0 w 1 q β 2 w 0 w 1 q ] [ α 3 w 0 w 1 q β 4 w 0 w 1 q ] : : [ α p 1 w 0 w 1 q β p w 0 w 1 q ] = [ ( α 1 + α 3 + . . . + α p 1 ) ( β 2 + β 4 + . . . + β p ) ] w 0 w 1 q α i β j + ρ μ ¯ i γ ¯ j w 0 w 1 q 0 ,
where
α i = α 1 + α 3 + . . . + α p 1 , β j = β 2 + β 4 . . . + β p , μ ¯ i = μ ¯ 1 + μ ¯ 3 + . . . + μ ¯ p 1 , γ ¯ j = γ ¯ 2 + γ ¯ 4 . . . + γ ¯ p .
Since μ ¯ i > γ ¯ j , α i > β j and ρ > 0 , it implies that w 0 = w 1 . By (2), we have z 0 = z 1 . Thus, ( w 1 , z 1 ) = ( w o , z o ) Gr ( N ( f 1 , f 2 , . . . , f p ) ) . Similarly, we can prove the result when p is an odd number. This completes the proof. □
Theorem 1.
Let assumptions M 1 and M 2 hold for every i { 1 , 2 , . . . p } , p 3 , and let N : Y p 2 Y be a generalized α i β j - H p ( A 1 , A 2 , . . . , A p ) -accretive mapping with μ ¯ i > γ ¯ j , α i > β j ; then, ( H p ( A 1 , A 2 , . . . , A p ) + ρ N ( f 1 , f 2 , . . . , f p ) ) 1 is single-valued.
Proof. 
For any given u Y , let x , y ( H p ( A 1 , A 2 , . . . , A p ) + ρ N ( f 1 , f 2 , . . . , f p ) ) 1 ( u ) . It follows that
H p ( A 1 x , A 2 x , . . . , A p x ) + u ρ N ( f 1 , f 2 , . . . , f p ) x , H p ( A 1 y , A 2 y , . . . , A p y ) + u ρ N ( f 1 , f 2 , . . . , f p ) y .
If p is even: Since N is μ ¯ 1 γ ¯ 2 μ ¯ 3 γ ¯ 4 . . . μ ¯ p 1 γ ¯ p -symmetric accretive with f 1 , f 2 , . . . , f p , we have
( μ ¯ 1 + μ ¯ 3 + . . . + μ ¯ p 1 γ ¯ 2 γ ¯ 4 . . . γ ¯ p ) x y q 1 ρ H p ( A 1 x , A 2 x , . . . , A p x ) + u ( H p ( A 1 y , A 2 y , . . . , A p y ) + u ) , J q ( x y ) ρ ( μ ¯ 1 + μ ¯ 3 + . . . + μ ¯ p 1 γ ¯ 2 γ ¯ 4 . . . γ ¯ p ) x y q H p ( A 1 x , A 2 x , . . . , A p x ) H p ( A 1 y , A 2 y , . . . , A p y ) , J q ( x y ) = ( H p ( A 1 x , A 2 x , . . . , A p x ) H p ( A 1 y , A 2 x , . . . , A p x ) , J q ( x y ) H p ( A 1 y , A 2 x , . . . , A p x ) H p ( A 1 y , A 2 y , . . . , A p x ) , J q ( x y ) : : H p ( A 1 y , A 2 y , . . . , A p x ) H p ( A 1 y , A 2 y , . . . , A p y ) , J q ( x y ) .
We proceed through the same process as that to obtain (4), and we have
α i β j + ρ μ ¯ i γ ¯ j x y q 0 .
Since μ ¯ i > γ ¯ j , α i > β j and ρ > 0 , we have x y 0 . It implies that x = y . Thus, ( H p ( A 1 , A 2 , . . . , A p ) + ρ N ( f 1 , f 2 , . . . , f p ) ) 1 is single-valued. Similarly, we can prove the result when p is an odd number. This completes the proof. □
Definition 9.
Let assumptions M 1 and M 2 hold for p 3 , and let N : Y p 2 Y be a generalized α i β j - H p ( . , . , . . . ) -accretive mapping with μ ¯ i > γ ¯ j , α i > β j . A proximal-point mapping R ρ , N ( . , . , . . , . ) H p ( . , . , . . , . ) : Y Y is defined by
R ρ , N ( . , . , . . . ) H p ( . , . , . . . ) ( x ) = [ H p ( A 1 , A 2 , . . . , A p ) + ρ N ( f 1 , f 2 , . . . , f p ) ] 1 ( x ) , x Y ,
where ρ is a non-negative constant.
Now, we prove the Lipschitz continuity of the proximal-point mapping.
Theorem 2.
Let assumptions M 1 and M 2 hold for p 3 , and let N : Y p 2 Y be a generalized α i β j - H p ( . , . , . . . ) -accretive mapping with μ ¯ i > γ ¯ j , α i > β j . Then, the proximal-point mapping R ρ , N ( . , . , . . , . ) H p ( . , . , . . , . ) : Y Y is Δ-Lipschitz continuous, where
Δ = α i β j + ρ μ ¯ i γ ¯ j 1 .
Proof. 
Let x , y Y and by Definition 9, we have
R ρ , N ( . , . , . . . ) H p ( . , . , . . . ) ( x ) = ( H p ( A 1 , A 2 , . . . , A p ) + ρ N ( f 1 , f 2 , . . . , f p ) ) 1 ( x ) , R ρ , N ( . , . , . . . ) H p ( . , . , . . . ) ( y ) = ( H p ( A 1 , A 2 , . . . , A p ) + ρ N ( f 1 , f 2 , . . . , f p ) ) 1 ( y ) .
It follows that
1 ρ ( x H p ( A 1 ( R ρ , N ( . , . , . . . ) H p ( . , . , . . . ) ( x ) ) , A 2 ( R ρ , N ( . , . , . . . ) H p ( . , . , . . . ) ( x ) ) , . . . , A p ( R ρ , N ( . , . , . . . ) H p ( . , . , . . . ) ( x ) ) ) ) N ( R ρ , N ( . , . , . . . ) H p ( . , . , . . . ) ( x ) ) , 1 ρ ( y H p ( A 1 ( R ρ , N ( . , . , . . . ) H p ( . , . , . . . ) ( y ) ) , A 2 ( R ρ , N ( . , . , . . . ) H p ( . , . , . . . ) ( y ) ) , . . . , A p ( R ρ , N ( . , . , . . . ) H p ( . , . , . . . ) ( y ) ) ) ) N ( R ρ , N ( . , . , . . . ) H p ( . , . , . . . ) ( y ) ) .
Let x 1 = R ρ , N ( . , . , . . . ) H p ( . , . , . . . ) ( x ) and y 1 = R ρ , N ( . , . , . . . ) H p ( . , . , . . . ) ( y ) .
If p is even: Since N is μ ¯ 1 γ ¯ 2 . . . μ ¯ p 1 γ p -symmetric accretive with ( f 1 , f 2 , . . . , f p ) , we have
( x H p ( A 1 ( x 1 ) , A 2 ( x 1 ) , . . . , A p ( x 1 ) ) ) ( y H p ( A 1 ( y 1 ) , A 2 ( y 1 ) , . . . , A p ( y 1 ) ) ) , J q ( x 1 y 1 ) ρ ( μ ¯ 1 γ ¯ 2 + μ ¯ 3 γ ¯ 4 + . . . + μ ¯ p 1 γ ¯ p ) x 1 y 1 q , x y ( H p ( A 1 ( x 1 ) , A 2 ( x 1 ) , . . . , A p ( x 1 ) ) H p ( A 1 ( y 1 ) , A 2 ( y 1 ) , . . . , A p ( y 1 ) ) ) , J q ( x 1 y 1 ) ρ ( ( μ ¯ 1 + μ ¯ 3 + . . . + μ ¯ p 1 ( γ ¯ 2 + γ ¯ 4 . . . + γ ¯ p ) ) x 1 y 1 q .
Let α i = α 1 + α 3 + . . . + α p 1 ,   β j = β 2 + β 4 . . . + β p ,   μ ¯ i = μ ¯ 1 + μ ¯ 3 + . . . + μ ¯ p 1 ,   γ ¯ j = γ ¯ 2 + γ ¯ 4 . . . + γ ¯ p .
We have
x y x 1 y 1 q 1 x y , J q ( x 1 y 1 ) H p ( A 1 ( x 1 ) , A 2 ( x 1 ) , . . . , A p ( x 1 ) ) H p ( A 1 ( y 1 ) , A 2 ( y 1 ) , . . . , A p ( y 1 ) ) , J q ( x 1 y 1 ) + ρ μ ¯ i γ ¯ j x 1 y 1 q α 1 x 1 y 1 q β 2 x 1 y 1 q + α 3 x 1 y 1 q . . . β p x 1 y 1 q + ρ μ ¯ i γ ¯ j x 1 y 1 q = α i β j + ρ μ ¯ i γ ¯ j x 1 y 1 q .
Hence,
x y x 1 y 1 q 1 α i β j + ρ μ ¯ i γ ¯ j x 1 y 1 q ;
that is,
R ρ , N ( . , . , . . . ) H p ( . , . , . . . ) ( x ) R ρ , N ( . , . , . . . ) H p ( . , . , . . . ) ( y ) Δ x y , x , y Y ,
where Δ = α i β j + ρ μ ¯ i γ ¯ j 1 . Similarly, we can prove the result when p is an odd number. This completes the proof. □

3. Set-Valued Variational Inclusions

Let Y be a q-uniformly smooth Banach space. For each i { 1 , 2 , . . . , p } , p 3 , let H p , F : Y p Y be the mappings, A i , f i : Y Y be the single-valued mappings, and S i : Y 2 Y be a set-valued mapping. Let N : Y p 2 Y be a generalized α i β j - H p ( . , . , . . . , . ) -accretive mapping.
Now, the problem is to find x Y , u 1 S 1 ( x ) , u 2 S 2 ( x ) , . . . , u p S p ( x ) such that
Θ F ( u 1 , u 2 , . . . , u p ) + N ( f 1 ( x ) , f 2 ( x ) , . . . , f p ( x ) ) .
Special cases:
(i)
If F ( u 1 , u 2 , . . . , u p ) = F ( u 1 , u 2 ) , and N ( f 1 ( x ) , f 2 ( x ) , . . . , f p ( x ) ) = N ( f 1 ( x ) , f 2 ( x ) ) , then problem (6) reduces to find x Y , u 1 S 1 ( x ) , u 2 S 2 ( x ) such that
Θ F ( u 1 , u 2 ) + N ( f 1 ( x ) , f 2 ( x ) ) .
(ii)
If f 1 = f 2 = f , S 1 = S 2 = S , and N ( . , . ) = N ( . ) , then problem (7) reduces to find x Y , u S ( x ) such that
Θ u + N ( f ( x ) ) .
Problem (8) has been studied by Huang [26] when N is a m-accretive mapping.
(iii)
If F ( u 1 , u 2 ) = S ( x ) and S is single-valued mapping, then problem (7) reduced to find x Y such that
Θ S ( x ) + N ( x ) .
Problem (9) has been studied by Zou and Huang [9] when N is an H ( . ,   . ) -accretive mapping. For the generalized m-accretive mapping, problem (9) was studied by Bi et al. [27].
Definition 10.
A set-valued mapping S : Y C B ( Y ) is said to be D ˜ - Lipschitz continuous with ζ > 0 , if
D ˜ ( S y , S z ) ζ y z , y , z Y .
Theorem 3.
For any given ( x ˜ , u ˜ 1 , u ˜ 2 , . . . , u ˜ p ) Y × Y p , ( x ˜ , u ˜ 1 , u ˜ 2 , . . . , u ˜ p ) is a solution of (6) if and only if ( x ˜ , u ˜ 1 , u ˜ 2 , . . . , u ˜ p ) satisfies
x ˜ = R ρ , N ( . , . , . . . ) H p ( . , . , . . . ) [ H p ( A 1 , A 2 , . . . , A p ) ( x ˜ ) ρ F ( u ˜ 1 , u ˜ 2 , . . . , u ˜ p ) ] ,
where ρ is a non-negative constant.
Proof. 
Let ( x ˜ , u ˜ 1 , u ˜ 2 , . . . , u ˜ p ) be the solution of problem (6), we have
Θ F ( u ˜ 1 , u ˜ 2 , . . . , u ˜ p ) + N ( f 1 ( x ˜ ) , f 2 ( x ˜ ) , . . . , f p ( x ˜ ) ) H p ( A 1 ( x ˜ ) , A 2 ( x ˜ ) , . . . , A p ( x ˜ ) ) H p ( A 1 ( x ˜ ) , A 2 ( x ˜ ) , . . . , A p ( x ˜ ) ) + ρ F ( u ˜ 1 , u ˜ 2 , . . . , u ˜ p ) + N ( f 1 ( x ˜ ) , f 2 ( x ˜ ) , . . . , f p ( x ˜ ) ) H p ( A 1 ( x ˜ ) , A 2 ( x ˜ ) , . . . , A p ( x ˜ ) ) ρ F ( u ˜ 1 , u ˜ 2 , . . . , u ˜ p ) H p ( A 1 ( x ˜ ) , A 2 ( x ˜ ) , . . . , A p ( x ˜ ) ) + ρ N ( f 1 ( x ˜ ) , f 2 ( x ˜ ) , . . . , f p ( x ˜ ) ) x ˜ = R ρ , N ( . , . , . . . ) H p ( . , . , . . . ) [ H p ( A 1 ( x ˜ ) , A 2 ( x ˜ ) , . . . , A p ( x ˜ ) ) ρ F ( u ˜ 1 , u ˜ 2 , . . . , u ˜ p ) ] .
Algorithm 1.
For any given x 0 1 Y , we select u 0 1 S 1 ( x 0 1 ) , u 0 2 S 2 ( x 0 1 ) , . . . , u 0 p S p ( x 0 1 ) and obtain { x n 1 } , { u n 1 } , { u n 2 } ,..., { u n p } by the following iterative scheme
x n + 1 1 = R ρ , N ( . , . , . . . ) H p ( . , . , . . . ) [ H p ( A 1 , A 2 , . . . , A p ) ( x n 1 ) ρ F 1 ( u n 1 , u n 2 , . . . , u n p ) ] , u n 1 S 1 ( x n 1 ) : u n + 1 1 u n 1 1 + 1 n + 1 D ˜ ( S 1 ( x n + 1 1 ) , S 1 ( x n 1 ) ) , u n 2 S 2 ( x n 1 ) : u n + 1 2 u n 2 1 + 1 n + 1 D ˜ ( S 2 ( x n + 1 1 ) , S 2 ( x n 1 ) ) , : : u n p S p ( x n 1 ) : u n + 1 p u n p 1 + 1 n + 1 D ˜ ( S p ( x n + 1 1 ) , S p ( x n 1 ) ) ,
where n = 0,1,2,... and ρ > 0 .
Theorem 4.
Let problem (6) hold with assumptions M 1 - M 4 and N : Y p 2 Y be a generalized α i β j - H p ( . , . , . . . ) -accretive mapping with μ ¯ i > γ ¯ j , α i > β j . For each i { 1 , 2 , . . . , p } , we assume the following:
(i)
S i is ζ i - D -Lipschitz continuous;
(ii)
H p ( . , . , . . . ) is s i -Lipschitz continuous with A i ;
(iii)
F is α ¯ i -strongly accretive with f i and H p ( A 1 , A 2 , . . , A p ) in the i t h -argument;
(iv)
F is l i -Lipschitz continuous in i t h -argument;
(v)
in addition the following condition is satisfied:
Δ q s q + c q ρ q Υ q ρ q α ¯ s q < 1 .
Then, the iterative sequences ( { x n 1 } , { u n 1 } , { u n 2 } , . . . . , { u n p } ) developed by Algorithm 1 converge strongly to ( x 1 , u 1 , u 2 , . . , u p ) a solution to problem (6).
Proof. 
From Algorithm 1 and Theorem 2, we have
x n + 1 1 x n 1 = R ρ , N ( . , . , . . . ) H p ( . , . , . . . ) [ H p ( A 1 , A 2 , . . . , A p ) ( x n 1 ) ρ F ( u n 1 , u n 2 , . . . , u n p ) ] R ρ , N ( . , . , . . . ) H p ( . , . , . . . ) [ H p ( A 1 , A 2 , . . . , A p ) ( x n 1 1 ) ρ F ( u n 1 1 , u n 1 2 , . . . , u n 1 p ) ] Δ H p ( A 1 , A 2 , . . . , A p ) ( x n 1 ) ρ F ( u n 1 , u n 2 , . . . , u n p ) ( H p ( A 1 , A 2 , . . . , A p ) ( x n 1 1 ) ρ F ( u n 1 1 , u n 1 2 , . . . , u n 1 p ) ) = Δ H p ( A 1 , A 2 , . . . , A p ) ( x n 1 ) H p ( A 1 , A 2 , . . . , A p ) ( x n 1 1 ) ρ ( F ( u n 1 , u n 2 , . . . , u n p ) F ( u n 1 1 , u n 1 2 , . . . , u n 1 p ) )
H p ( A 1 , A 2 , . . . , A p ) ( x n 1 ) H p ( A 1 , A 2 , . . . , A p ) ( x n 1 1 ) ρ ( F ( u n 1 , u n 2 , . . . , u n p ) F ( u n 1 1 , u n 1 2 , . . . , u n 1 p ) ) q H p ( A 1 , A 2 , . . . , A p ) ( x n 1 ) H p ( A 1 , A 2 , . . . , A p ) ( x n 1 1 ) q ρ q ( F ( u n 1 , u n 2 , . . . , u n p ) F ( u n 1 1 , u n 1 2 , . . . , u n 1 p ) ) , J q ( H p ( A 1 , A 2 , . . . , A p ) ( x n 1 ) H p ( A 1 , A 2 , . . . , A p ) ( x n 1 1 ) ) + c q ρ q F ( u n 1 , u n 2 , . . . , u n p ) F ( u n 1 1 , u n 1 2 , . . . , u n 1 p ) q .
By using the s i -Lipschitz continuity of H P ( . , . . . , A i , . . , . ) , we have
H p ( A 1 , A 2 , . . . , A p ) ( x n 1 ) H p ( A 1 , A 2 , . . . , A p ) ( x n 1 1 ) H p ( A 1 x n 1 , A 2 x n 1 , . . . , A p x n 1 ) ) H p ( A 1 x n 1 1 , A 2 x n 1 , . . . , A p x n 1 ) + H p ( A 1 x n 1 1 , A 2 x n 1 , . . . , A p x n 1 ) H p ( A 1 x n 1 1 , A 2 x n 1 1 , . . . , A p x n 1 ) : : + H p ( A 1 x n 1 1 , A 2 x n 1 1 , . . . , A p x n 1 ) H p ( A 1 x n 1 1 , A 2 x n 1 1 , . . . , A p x n 1 1 ) s 1 x n 1 1 x n 1 + s 2 x n 1 1 x n 1 + . . . + s p x n 1 1 x n 1 | = s x n 1 1 x n 1 , where s = s 1 + s 2 + . . . + s p .
By the l i -Lipschitz continuity of F and ζ i - D -Lipschitz continuity of S i , we have
F ( u n 1 , u n 2 , . . . , u n p ) F ( u n 1 1 , u n 1 2 , . . . , u n 1 p ) F ( u n 1 , u n 2 , . . . , u n p ) F ( u n 1 1 , u n 2 , . . . , u n p ) + F ( u n 1 1 , u n 2 , . . . , u n p ) F ( u n 1 1 , u n 1 2 , . . . , u n p ) : : + F ( u n 1 1 , u n 1 2 , . . . , u n 1 p ) F ( u n 1 1 , u n 1 2 , . . . , u n p ) l 1 u n 1 u n 1 1 + l 2 u n 2 u n 1 2 + . . . + l p u n p u n 1 p l 1 1 + 1 n D ˜ ( S 1 ( x n 1 ) , S 1 ( x n 1 1 ) ) + l 2 1 + 1 n D ˜ ( S 2 ( x n 2 ) , S 2 ( x n 1 2 ) ) + . . . + l p 1 + 1 n D ˜ ( S p ( x n p ) , S p ( x n 1 p ) ) l 1 ζ 1 1 + 1 n + l 2 ζ 2 1 + 1 n + . . . + l p ζ p 1 + 1 n x n 1 x n 1 1 1 + 1 n Υ x n 1 x n 1 1 , where Υ = l 1 ζ 1 + l 2 ζ 2 + . . . + l p ζ p .
Now, we compute
F ( u n 1 , u n 2 , . . . , u n p ) F ( u n 1 1 , u n 1 2 , . . . , u n 1 p ) , J q ( H p ( A 1 , A 2 , . . . , A p ) ( x n 1 ) H p ( A 1 , A 2 , . . . , A p ) ( x n 1 1 ) ) , = [ F ( u n 1 , u n 2 , . . . , u n p ) F ( u n 1 1 , u n 2 , . . . , u n p ) , J q ( H p ( A 1 , A 2 , . . . , A p ) ( x n 1 ) H p ( A 1 , A 2 , . . . , A p ) ( x n 1 1 ) ) , + F ( u n 1 1 , u n 2 , . . . , u n p ) F ( u n 1 1 , u n 1 2 , . . . , u n p ) , J q ( H p ( A 1 , A 2 , . . . , A p ) ( x n 1 ) H p ( A 1 , A 2 , . . . , A p ) ( x n 1 1 ) ) , : : + F ( u n 1 1 , u n 1 2 , . . . , u n p ) F ( u n 1 1 , u n 1 2 , . . . , u n 1 p ) , J q ( H p ( A 1 , A 2 , . . . , A p ) ( x n 1 ) H p ( A 1 , A 2 , . . . , A p ) ( x n 1 1 ) ) ] ,
we have
F ( u n 1 , u n 2 , . . . , u n p ) F ( u n 1 1 , u n 1 2 , . . . , u n 1 p ) , J q ( H p ( A 1 , A 2 , . . . , A p ) ( x n 1 ) H p ( A 1 , A 2 , . . . , A p ) ( x n 1 1 ) ) , [ α ¯ 1 H p ( A 1 , A 2 , . . . , A p ) ( x n 1 ) H p ( A 1 , A 2 , . . . , A p ) ( x n 1 1 ) ) q + α ¯ 2 H p ( A 1 , A 2 , . . . , A p ) ( x n 1 ) H p ( A 1 , A 2 , . . . , A p ) ( x n 1 1 ) ) q : : + α ¯ p H p ( A 1 , A 2 , . . . , A p ) ( x n 1 ) H p ( A 1 , A 2 , . . . , A p ) ( x n 1 1 ) ) q ] ( α ¯ 1 + α ¯ 2 + . . . + α ¯ p ) H p ( A 1 , A 2 , . . . , A p ) ( x n 1 ) H p ( A 1 , A 2 , . . . , A p ) ( x n 1 1 ) ) q [ ( α ¯ 1 + α ¯ 2 + . . . + α ¯ p ) H p ( A 1 x n 1 , A 2 x n 1 , . . . , A p x n 1 ) ) H p ( A 1 x n 1 1 , A 2 x n 1 , . . . , A p x n 1 + ( α ¯ 1 + α ¯ 2 + . . . + α ¯ p ) H p ( A 1 x n 1 1 , A 2 x n 1 , . . . , A p x n 1 ) H p ( A 1 x n 1 1 , A 2 x n 1 1 , . . . , A p x n 1 ) : : + ( α ¯ 1 + α ¯ 2 + . . . + α ¯ p ) H p ( A 1 x n 1 1 , A 2 x n 1 1 , . . . , A p x n 1 ) H p ( A 1 x n 1 1 , A 2 x n 1 1 , . . . , A p x n 1 1 ) ] ( α ¯ 1 + α ¯ 2 + . . . + α ¯ p ) { s 1 x n 1 x n 1 1 + s 2 x n 1 x n 1 1 + . . . + s p x n 1 x n 1 1 } q ( α ¯ 1 + α ¯ 2 + . . . + α ¯ p ) ( s 1 + s 2 + . . . + s p ) q x n 1 x n 1 1 q = α ¯ s q x n 1 x n 1 1 q , where α ¯ = α ¯ 1 + α ¯ 2 + . . . + α ¯ p .
Using Equations (13)–(16) in Equation (12), then Equation (12) becomes
x n + 1 1 x n 1 Δ s q + c q ρ q Υ q 1 + 1 n q ρ q α ¯ s q 1 q x n 1 x n 1 1 ,
which implies that
x n + 1 1 x n 1 Θ n x n 1 x n 1 1 , where Θ n = Δ s q + c q ρ q Υ q 1 + 1 n q ρ q α ¯ s q 1 q .
Let Θ = Δ s q + c q ρ q Υ q ρ q α ¯ s q 1 q . From (11), we have
Δ q s q + c q ρ q Υ q ρ q α ¯ s q < 1 , where Δ = α i β j + ρ μ ¯ i γ ¯ j 1 .
Thus, we have lim n Θ n Θ . By (11), we have 0 Θ < 1 . This implies that x n + 1 1 x n 1 0 as n ; therefore, { x n 1 } is a Cauchy sequence in Y. Then, there exists x Y with lim n x n 1 x 1 . By the D -Lipschitz continuity of S 1 , S 2 , . . . , S p and Algorithm 1, we have
u n + 1 1 u n 1 1 + 1 n + 1 D ˜ ( S 1 ( x n + 1 1 ) , S 1 ( x n 1 ) ) 1 + 1 n + 1 ζ 1 x n + 1 1 x n 1 , u n + 1 2 u n 2 1 + 1 n + 1 D ˜ ( S 2 ( x n + 1 1 ) , S 2 ( x n 1 ) ) 1 + 1 n + 1 ζ 2 x n + 1 1 x n 1 ,
: u n + 1 p u n p 1 + 1 n + 1 D ˜ ( S p ( x n + 1 1 ) , S p ( x n 1 ) ) 1 + 1 n + 1 ζ p x n + 1 1 x n 1 .
It shows that { u n 1 } , { u n 2 } , . . . . , { u n p } are Cauchy sequences; then, there exists u 1 , u 2 , . . . u p such that u n 1 u 1 , u n 2 u 2 , . . . , u n p u p , as n . Now, we show that u 1 S 1 ( x 1 ) . Since u n 1 S 1 ( x 1 ) , we have
d ( u 1 , S 1 ( x 1 ) ) u 1 u n 1 + d ( u n 1 , S 1 ( x 1 ) ) u 1 u n 1 + D ˜ ( S 1 ( x n 1 ) , S 1 ( x 1 ) ) u 1 u n 1 + ζ 1 x n 1 x 1 .
Since S 1 ( x 1 ) is closed, u 1 S 1 ( x 1 ) . Similarly, we can prove u 2 S 2 ( x 1 ) , u 3 S 3 ( x 1 ) , . . . , u p S p ( x 1 ) . By continuity, we know that x 1 , u 1 , u 2 , . . . , u p satisfy
x 1 = R ρ , N ( . , . , . . . ) H p ( . , . , . . . ) [ H p ( A 1 , A 2 , . . . , A p ) ( x 1 ) ρ F ( u 1 , u 2 , . . . , u p ) ] .
Thus, problem (6) has the solution ( x 1 , u 1 , u 2 , . . . , u p ) . □
Remark 1.
Let p be an even number. Let f : Y R be a functional on Y; then, the vector x * , such that
f ( z ) f ( y ) x * , z y , z Y ,
where f ( z ) is finite for each z Y , is known as the subgradient of f at z. The collections of all such subgradients of f at z holding (18) are known as the subdifferential δ f ( z ) of f at z. Let δ ( . , . , f i , . . ) : Y p 2 Y be set-valued mapping and consider the inclusion problem to find x * Y such that
0 F ( u 1 , u 2 , . . . , u p ) + δ ( f 1 , f 2 , . . . , f p ) ( x * ) .
Then, it turns out that H p ( . , . , . . . ) + δ ( f 1 , f 2 , . . . , f p ) is L -strongly accretive, where L = α i + μ ¯ i β j + γ ¯ j > 0 , if H p is α 1 β 2 α 3 β 4 . . . α p 1 β p -symmetric accretive with A 1 , A 2 , . . . , A p , f 1 , f 2 , . . . , f p : Y Y as the locally Lipschitz functionals on Y, and δ ( f 1 , f 2 , . . . , f p ) is μ ¯ 1 γ ¯ 2 μ ¯ 3 γ ¯ 4 . . . μ ¯ p 1 γ ¯ p -symmetric accretive with f 1 , f 2 , . . . , f p ; equivalently, we can state that δ ( . . . , f i , . . ) is a generalized α i β j - H p ( . , . , . . . ) -accretive mapping. Now, all the assumptions of Theorem 4 hold, and one can easily find the solution to problem (19) by using Theorem 4.

4. Conclusions

In this article, we considered the generalized α i β j - H p ( . ,   . ,   . . . ) -accretive mappings defined on a product set, which contained the generalized α β - H ( . ,   . ) -accretive mappings, H ( . ,   . ) -accretive mappings, and C n monotone mappings as special cases, since variational inclusions, generalized α i β j - H p ( . ,   . ,   . . . ) -accretive mappings, and proximal-point mappings have applications in physics, economics and management sciences. Therefore, we considered and studied a variational inclusion problem including a generalized α i β j - H p ( . ,   . ,   . . . ) -accretive mapping. We discussed the convergence criteria of an iterative algorithm to solve problem (6) under appropriate assumptions in q-uniformly smooth Banach spaces. In future, the results that are obtained for the proximal-point mapping associated with the generalized α i β j - H p ( . ,   . ,   . . . ) -accretive mappings conferred in this article can be continued to the Yosida inclusion problems in the setting of Banach spaces.

Author Contributions

Both the authors have equally contributed to the manuscript. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no funding.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

Not applicable.

Acknowledgments

The authors sincerely thank the reviewers for their suggestions and helpful comments that led to the present form of the original manuscript.

Conflicts of Interest

The authors declare no conflict of interest.

Appendix A. Appendix of Example 2

For any u 2 , u 3 , . . . . u p Y , let
H p ( A 1 ( x ) , u 2 , . . . , u p 1 ) H p ( A 1 ( y ) , u 2 , . . . , u p 1 ) , x y = A 1 ( x ) A 1 ( y ) , x y = x 3 8 + 2 x 3 ( y 3 8 + 2 y 3 ) , x y = 1 / 8 ( x y ) 2 ( x 2 + y 2 + x y ) + 2 / 3 ( x y ) 2 2 3 ( x y ) 2 .
Thus, H p ( . ,   . ,   . . . ) is 2 3 -strongly accretive with A 1 . In a similar way, we can show that H p ( . ,   . ,   . . . ) is 2 3 -strongly accretive with A 1 for all i { 1 , 3 , . . . , p 1 } .
For any u 1 , u 3 , . . . . u p Y , let
H p ( u 1 , A 2 ( x ) , . . . , u p 1 ) H p ( u 1 A 2 ( y ) , . . . , u p 1 ) , x y = A 2 ( x ) A 2 ( y ) , x y = x 2 y 2 , x y = 1 / 2 ( x y ) 2 3 2 ( x y ) 2 .
Thus, H p ( . ,   . ,   . . . ) is 3 2 -relaxed accretive with A 2 . In a similar way, we can show that H p ( . ,   . ,   . . . ) is 3 2 -relaxed accretive with A i for all i { 2 , 4 , . . . , p } .
For any v 2 , v 3 , . . . . v p Y , let
N n ( f 1 ( x ˜ ) , v 2 , . . . , v p 1 ) N n ( f 1 ( y ˜ ) , v 2 , . . . , v p 1 ) , x ˜ y ˜ = f 1 ( x ˜ ) + 1 n 2 f 1 ( y ˜ ) + 1 n 2 , x ˜ y ˜ = x ˜ 4 y ˜ 4 , x ˜ y ˜ = 1 / 4 ( x ˜ y ˜ ) 2 1 4 ( x ˜ y ˜ ) 2 .
Thus, N n is 1 4 -strongly accretive with f 1 . In a similar way, we can show that N n is 1 4 -strongly accretive with f i for all i { 1 , 3 , . . . , p 1 } .
For any v 1 , v 3 , . . . . v p Y , let
N n ( v 1 , f 2 ( x ˜ ) , . . . , v p 1 ) N n ( v 1 f 2 ( y ˜ ) , . . . , v p 1 ) , x ˜ y ˜ = f 2 ( x ˜ ) + 1 n 2 f 2 ( y ˜ ) + 1 n 2 , x ˜ y ˜ = 5 x ˜ 12 5 y ˜ 12 , x ˜ y ˜ = 5 / 12 ( x ˜ y ˜ ) 2 ) 17 12 ( x ˜ y ˜ ) 2 .
Thus, N n is 17 12 -relaxed accretive with f 2 . In a similar way, we can show that N n is 17 12 -relaxed accretive with f i for all i { 2 , 4 , . . . , p } .
Similarly, we can show that N is 1 4 -strongly accretive with f i for all i { 1 , 2 , . . . , p 1 } and N is 17 12 -relaxed accretive with f i for all i { 2 , 4 , . . . , p } .
One can easily verify the following for ρ = 1 :
[ H p ( A 1 , A 2 , . . . , A p ) + ρ N ( f 1 , f 2 , . . . , f p ) ] R = R .
Hence, N is generalized α i β j -accretive with ( A 1 , A 2 , . . . , A p ) and ( f 1 , f 2 , . . . , f p ) .

References

  1. Fang, Y.-P.; Huang, N.-J. H-monotone operator and resolvent operator technique for variational inclusions. Appl. Math. Comput. 2003, 145, 795–803. [Google Scholar] [CrossRef]
  2. Hammad, H.A.; De la Sen, M. Shrinking projection Methods for accelerating relaxed inertial Tseng-type algorithm with applications. Math. Probl. Eng. 2020, 2020, 7487383. [Google Scholar] [CrossRef]
  3. Kazmi, K.R.; Khan, F.A.; Shahzad, M. A system of generalized variational inclusions involving generalized H(., .)-accretive mapping in real q-uniformly smooth Banach spaces. Appl. Math. Comput. 2011, 217, 9679–9688. [Google Scholar] [CrossRef]
  4. Lan, H.-Y.; Cho, Y.J.; Verma, R.U. Nonlinear relaxed cocoercive variational inclusions involving (A,η)-accretive mappings in Banach spaces. Comput. Math. Appl. 2006, 51, 1529–1538. [Google Scholar] [CrossRef] [Green Version]
  5. Peng, J.-W. On a new system of generalized mixed quasi-variational-like inclusions with (H,η)-accretive operators in real q-uniformly smooth Banach spaces. Nonlinear Anal. 2008, 68, 981–993. [Google Scholar] [CrossRef]
  6. Peng, J.-W.; Zhu, D.L. A new system of generalized mixed quasi-vatiational inclusions with (H,η)-monotone operators. J. Math. Anal. Appl. 2007, 327, 175–187. [Google Scholar] [CrossRef] [Green Version]
  7. Sun, J.; Zhang, L.; Xiao, X. An algorithm based on resolvent operators for solving variational inequalities in Hilbert spaces. Nonlinear Anal. (TMA) 2008, 69, 3344–3357. [Google Scholar] [CrossRef]
  8. Tuyen, T.M.; Hammad, H.A. Effect of shrinking projection and CQ-methods on two inertial forward–backward algorithms for solving variational inclusion problems. Rend. Circ. Mat. Palermo II Ser 2021, 70, 1669–1683. [Google Scholar] [CrossRef]
  9. Zou, Y.-Z.; Huang, N.-J. H(., .)-accretive operator with an application for solving variational inclusions in Banach spaces. Appl. Math. Comput. 2008, 204, 809–816. [Google Scholar] [CrossRef]
  10. Huang, N.-J.; Fang, Y.-P. Generalized m-accretive mappings in Banach spaces. J. Sichuan Univ. 2001, 38, 591–592. [Google Scholar]
  11. Zeng, L.C.; Guu, S.M.; Yao, J.C. Characterization of H-monotone operators with applications to variational inclusions. Comput. Math. Appl. 2005, 50, 329–337. [Google Scholar] [CrossRef]
  12. Zeng, L.C.; Guu, S.M.; Yao, J.C. An iterative method for generalized nonlinear set-valued mixed quasi-variational inequalities with H-monotone mappings. Comput. Math. Appl. 2007, 54, 476–483. [Google Scholar] [CrossRef] [Green Version]
  13. Zeng, L.C.; Guu, S.M.; Yao, J.C. Iterative approximation of solutions for a class of completely generalized set-valued quasi-variational inclusions. Comput. Math. Appl. 2008, 56, 978–987. [Google Scholar]
  14. Zou, Y.-Z.; Huang, N.-J. A new system of variational inclusions involving H(., .)-accretive operator in Banach spaces. Appl. Math. Comput. 2009, 212, 135–144. [Google Scholar] [CrossRef]
  15. Nazemi, S.Z. A new class of monotone mappings and a new class of variational inclusions in Banach spaces. J. Optimi. Theory Appl. 2012, 155, 785–795. [Google Scholar] [CrossRef]
  16. Guan, J.; Hu, C. A System of generalized variational inclusions involving a new monotone mapping in Banach Spaces. Abstr. Appl. Anal. 2013, 2013, 654537. [Google Scholar]
  17. Ahmad, R.; Dilshad, M.; Akram, M. Graph convergence for the H(., .)-co-accretive mapping with an application. Bull. Malays. Math. Sci. Soc. 2014, 38, 1481–1506. [Google Scholar] [CrossRef]
  18. Balooee, J.; Chang, S.; Wen, C. Generalized nearly asymptotically nonexpansive mappings and a system of generalized variational-like inclusions: Iterative method and approximation of common solutions. Ann. Funct. Anal. 2022, 13, 1–61. [Google Scholar] [CrossRef]
  19. Bhat, M.I.; Zahoor, B. Existence of solution and iterative approximation of a system of generalized variational-like inclusion problems in semi-inner product spaces. Filomat 2017, 31, 6051–6070. [Google Scholar] [CrossRef] [Green Version]
  20. Gupta, S.; Husain, S.; Mishra, V.N. Variational inclusion governed by αβ-H((., .), (., .))-mixed accretive mapping. Filomat 2017, 31, 6529–6542. [Google Scholar] [CrossRef] [Green Version]
  21. Gupta, S.; Singh, M. Variational-like inclusion involving infinite family of set-valued mapping governed by resolvent equations. J. Math. Comput. Sci. 2021, 10, 874–892. [Google Scholar]
  22. Gupta, S.; Singh, M. Generalized monotone mapping and resolvent equation techniques with an application. J. Math. Comput. Sci. 2021, 2, 1767–1783. [Google Scholar]
  23. Husain, S.; Gupta, S.; Mishra, V.N. Graph convergence for the H(., .)-mixed mapping with an application for solving the system of generalized variational inclusions. Fixed Point Theory Appl. 2013, 2013, 304. [Google Scholar] [CrossRef] [Green Version]
  24. Ram, T.; Iqbal, M. H(., ., ., .)-ϕ-η-cocoercive operator with an application to variational inclusions. Int. J. Nonlinear Anal. Appl. 2022, 13, 1311–1327. [Google Scholar]
  25. Xu, H.K. Inequalities in Banach spaces with applications. Nonlinear Anal. 1991, 16, 1127–1138. [Google Scholar] [CrossRef]
  26. Huang, N.-J. A new class of generalized set-valued implicit variational inclusions in Banach spaces with an application. Comput. Math. Appl. 2001, 41, 937–943. [Google Scholar] [CrossRef]
  27. Bi, Z.S.; Hart, Z.; Fang, Y.P. Sensitivity analysis for nonlinear variational inclusions involving generalized m-accretive mappings. J. Sichuan Univ. 2003, 40, 240–243. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Gupta, S.; Khan, F.A. Set-Valued Variational Inclusion Governed by Generalized αiβj-Hp(., ., ...)-Accretive Mapping. Axioms 2022, 11, 539. https://doi.org/10.3390/axioms11100539

AMA Style

Gupta S, Khan FA. Set-Valued Variational Inclusion Governed by Generalized αiβj-Hp(., ., ...)-Accretive Mapping. Axioms. 2022; 11(10):539. https://doi.org/10.3390/axioms11100539

Chicago/Turabian Style

Gupta, Sanjeev, and Faizan Ahmad Khan. 2022. "Set-Valued Variational Inclusion Governed by Generalized αiβj-Hp(., ., ...)-Accretive Mapping" Axioms 11, no. 10: 539. https://doi.org/10.3390/axioms11100539

APA Style

Gupta, S., & Khan, F. A. (2022). Set-Valued Variational Inclusion Governed by Generalized αiβj-Hp(., ., ...)-Accretive Mapping. Axioms, 11(10), 539. https://doi.org/10.3390/axioms11100539

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop