Next Article in Journal
Multi-Layered Blockchain Governance Game
Previous Article in Journal
Semigroup Structures and Commutative Ideals of BCK-Algebras Based on Crossing Cubic Set Structures
Previous Article in Special Issue
The Algebraic Surfaces of the Enneper Family of Maximal Surfaces in Three Dimensional Minkowski Space
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

(ζ−m, ζm)-Type Algebraic Minimal Surfaces in Three-Dimensional Euclidean Space

Faculty of Sciences, Department of Mathematics, Kutlubey Campus, Bartın University, Bartın 74100, Turkey
*
Author to whom correspondence should be addressed.
These authors contributed equally to this work.
Axioms 2022, 11(1), 26; https://doi.org/10.3390/axioms11010026
Submission received: 9 December 2021 / Revised: 30 December 2021 / Accepted: 7 January 2022 / Published: 9 January 2022
(This article belongs to the Special Issue Applications of Differential Geometry II)

Abstract

:
We introduce the real minimal surfaces family by using the Weierstrass data ( ζ m , ζ m ) for ζ C , m Z 2 , then compute the irreducible algebraic surfaces of the surfaces family in three-dimensional Euclidean space E 3 . In addition, we propose that family has a degree number (resp., class number) 2 m ( m + 1 ) in the cartesian coordinates x , y , z (resp., in the inhomogeneous tangential coordinates a , b , c ).
MSC:
Primary 65D18; Secondary 53A10; 53C42

1. Introduction

A minimal surface is a kind of vanishing mean curvature surface in the three-dimensional Euclidean space E 3 . There are many classical and modern minimal surfaces in the literature. See [1,2,3,4,5,6,7,8,9] for some books, [10,11,12,13,14] for some papers related to minimal surfaces in E 3 , and also [15] for those in E 4 .
Lie [10] studied algebraic minimal surfaces and gave a table for these kinds of surfaces. See also [6,16,17,18,19,20,21,22,23,24] for details.
In this paper, we consider the minimal surfaces family by using the Weierstrass data ( ζ m , ζ m ) for ζ C , and some integers m 2 , and then show that these kinds of surfaces are algebraic in E 3 .
In Section 2, we give the real minimal surfaces family in the r , θ and ( u , v ) coordinates by using the Weierstrass representation in E 3 . In Section 3, we find irreducible algebraic equations by defining surfaces S m ( u , v ) in terms of running the coordinates x , y , z , and a , b , c , and we also compute degrees and classes of S m ( u , v ) . Finally, we present a conclusion with all findings in Table 1 and Table 2, with a conjecture in the last section.
Here, “*” means “out of memory”. See the last section for details.

2. ζ m , ζ m Type Minimal Surfaces

With the natural metric . , . R = d x 2 + d y 2 + d z 2 , let E 3 be a three-dimensional Euclidean space. We will refer to x and x t from here on without further comment.
Let U be an open subset of C . A minimal (or lenghtless) curve is an analytic function ϑ : U C n such that ϑ ζ , ϑ ζ C = 0 , where ζ U and ϑ : = ϑ ζ . In addition, if ϑ ζ , ϑ ¯ ζ C = ϑ 2 0 , then ϑ is a regular minimal curve. We then have the minimal surfaces in the associated family of a minimal curve, such as that given by the following Weierstrass representation theorem for minimal surfaces (see [13] for details).
Theorem 1.
Let g ω be a meromorphic function, and let f ω be a holomorphic function, f g 2 is analytic, defined on a simply connected open subset U C such that f ω does not vanish on U except at the poles of g ω . Then, the following
x ( u , v ) = R e ζ f 1 g 2 i f 1 + g 2 2 f g d ω ζ = u + i v
is a conformal immersion with a mean curvature identically 0 (i.e., conformal minimal surface). Conversely, any conformal minimal surface can be described in this manner.
Next, we present some findings on the Weierstrass data and the minimal curve to constuct the minimal surfaces used in the whole paper.
Definition 1.
A pair of the meromorphic function g and the holomorphic function f , ( f , g ) is called the Weierstrass data for a minimal surface.
Lemma 1.
The curve
s m ζ = ζ 1 m 1 m ζ m + 1 m + 1 , i ζ 1 m 1 m + ζ m + 1 m + 1 , 2 ζ
is a minimal curve, ζ C 0 , i = 1 .
We then have s m , s m = 0 by using (2). Hence, in E 3 , our minimal surface is given by the following equation:
S m u , v = R e s m ζ d ζ ,
where ζ = u + i v . Therefore, I m s m ζ d ζ gives the adjoint minimal surface S m a d j u , v of the surface S m u , v in (3).
Then, we get the following
Corollary 1.
The Weierstrass data
ζ m , ζ m
is a representation of minimal surface (3).
Taking into account the findings above with ζ = r e i θ , we obtain the following minimal surfaces family
S m r , θ = r 1 m 1 m cos 1 m θ r m + 1 m + 1 cos m + 1 θ r 1 m 1 m sin 1 m θ r m + 1 m + 1 sin m + 1 θ 2 r cos θ
where m 1 , 1 . See Figure 1 for the surfaces S 2 , S 3 , S 4 in the r , θ coordinates.
Hence, with the use of the binomial formula, we obtain a clearer representation of the S m u , v in (3):
x u , v = R e 1 1 m k = 0 1 m 1 m k u 1 m k i v k 1 m + 1 k = 0 m + 1 m + 1 k u m + 1 k i v k , y u , v = R e i 1 m k = 0 1 m 1 m k u m 1 k i v k + i m + 1 k = 0 m + 1 m + 1 k u m + 1 k i v k , z u , v = R e 2 u + i v .
We study the surface S m u , v in the ( u , v ) coordinates for m = 2 , 3 , , 7 (we have similar results for the surface S m u , v for m = 2 , 3 , , 7 ) , taking ζ = u + i v at the cartesian coordinates x , y , z , and also in the inhomogeneous tangential coordinates a , b , c , by using the Weierstrass representation equation.
Remark 1.
The surface
S 2 u , v = u u 4 2 u 2 v 2 3 v 4 + 3 3 u 2 + v 2 v 3 u 4 + 2 u 2 v 2 v 4 + 3 3 u 2 + v 2 2 u = x ( u , v ) y ( u , v ) z ( u , v )
which has the Weierstrass data ζ 2 , ζ 2 , is known as the Richmond’s minimal surface [24].
We compute the following Gauss map (see Figure 3, Left) of the surface S 2
e 2 = 2 u 2 v 2 λ 2 + 1 , 4 u v λ 2 + 1 , λ 2 1 λ 2 + 1 ,
where λ = u 2 + v 2 .
Next, we give a theorem about the minimality of surface S m u , v for the integer m = 3 .
Theorem 2.
The surface
S 3 u , v = u 8 4 u 6 v 2 10 u 4 v 4 4 u 2 v 6 + v 8 + 2 u 2 2 v 2 4 u 2 + v 2 3 u v u 6 + 4 u 4 v 2 u 2 v 4 v 6 + 1 u 2 + v 2 3 2 u = x ( u , v ) y ( u , v ) z ( u , v )
is a minimal surface in E 3 .
Proof. 
The coefficients of the first fundamental form of the surface S 3 u , v ( S 3 , for short) are given by the following
E = λ 3 λ 3 + 1 2 = G and F = 0 ,
where λ = u 2 + v 2 . That is, conformality holds. Then, the Gauss map (see Figure 3, Middle) of the surface S 3 is given by the equation below
e 3 = 2 u u 2 3 v 2 λ 3 + 1 , 2 v 3 u 2 v 2 λ 3 + 1 , λ 3 1 λ 3 + 1 .
The coefficients of the second fundamental form of S 3 are as follows
L = 6 u λ 1 = N and M = 6 v λ 1 .
We obtain the mean curvature and the Gaussian curvature of S 3 , respectively, as follows
H = 0 and K = 36 λ 7 λ + 1 4 λ + 1 2 4 u 2 2 λ + 1 2 4 v 2 2 .
Hence, the surface is minimal and has a negative Gaussian curvature. □

3. Degree and Class of Minimal Surfaces S m u , v

In this section, with the use of the elimination techniques, we compute the irreducible algebraic surface equations, the degrees, and the classes of the minimal surfaces family S m u , v for the integers 2 m 7 .
Next, we look at some definitions on the topic.
Definition 2.
An algebraic function is a function z = f ( x , y ) which satisfies Q ( x , y , f ( x , y ) ) = 0 , where Q ( x , y , z ) is a polynomial in x , y , and z with integer coefficients. Briefly, an algebraic function is a function that can be defined as the root of a polynomial equation.
Definition 3.
A polynomial is said to be irreducible if it cannot be factored into nontrivial polynomials over the same field.
By eliminating u and v of s u , v = ( x ( u , v ) , y ( u , v ) , z ( u , v ) ) , we can see an irreducible algebraic equation Q ( x , y , z ) = 0 in the cartesian coordinates. See [25] for the elimination theory.
Definition 4.
The set of roots of a polynomial Q ( x , y , z ) = 0 gives the algebraic surface equation. An algebraic surface s is said to be of degree d , when d = deg ( s ) .
Definition 5.
At a point ( u , v ) on a surface s u , v = ( x ( u , v ) , y ( u , v ) , z ( u , v ) ) , the tangent plane is given by the following equation
X x + Y y + Z z + P = 0 ,
where e = ( X ( u , v ) , Y ( u , v ) , Z ( u , v ) ) is the Gauss map, and P = P ( u , v ) . Then, we have the surface s ^ u , v in the inhomogeneous tangential coordinates a , b , c , as follows
s ^ u , v = a ( u , v ) , b ( u , v ) , c ( u , v ) = X / P , Y / P , Z / P .
Finally, by eliminating u and v, we can obtain an irreducible algebraic equation Q ^ ( a , b , c ) = 0 of s ^ u , v in the inhomogeneous tangential coordinates.
Definition 6.
The maximum degree of the equation Q ^ ( a , b , c ) = 0 gives the c l a s s of s ^ u , v .
See [6] for details.
In 1901, Richmond [23] proposed the following:
Proposition 1.
There exists a real minimal surface of order 12 whose class number is 12. There are no other real minimal surfaces of order 12.
See also [11,24] for details. Next, we will obtain irreducible algebraic surfaces. Let us see our findings for the degrees and classes.

3.1. Degree

We compute the irreducible algebraic surface equation Q 2 ( x , y , z ) = 0 (see Figure 2, Left) of the Richmond’s minimal surface S 2 u , v in (6) by using elimination techniques.
Q 2 ( x , y , z ) = x 2 z 10 + y 2 z 10 + 18 x 3 z 7 + 18 x y 2 z 7 + 2 x z 9 135 x 4 z 4 378 x 2 y 2 z 4 + 90 x 2 z 6 243 y 4 z 4 + 54 y 2 z 6 + z 8 + 216 x 5 z + 216 x 3 y 2 z 432 x 3 z 3 648 x y 2 z 3 + 120 x z 5 + 432 x 4 288 x 2 z 2 + 48 z 4 .
Then, its degree number is 12. Our findings agree with Richmond’s.
Since the real part of the third part of the integral in (1) is 2 u , then z = 2 u for all the following pairs x and y. We obtain the following parametric equations S m u , v for the integers 4 m 7 , respectively,
x = ρ 3 1 15 . 3 u 11 21 u 9 v 2 66 u 7 v 4 42 u 5 v 6 + 15 u 3 v 8 + 5 u 3 + 15 u v 10 15 u v 2 ,
y = ρ 3 1 15 . 15 u 10 v + 15 u 8 v 3 42 u 6 v 5 66 u 4 v 7 21 u 2 v 9 + 15 u 2 v + 3 v 11 5 v 3 ,
x = ρ 4 1 12 . 2 u 14 22 u 12 v 2 78 u 10 v 4 54 u 8 v 6 + 54 u 6 v 8 + 78 u 4 v 10 + 22 u 2 v 12 2 v 14 + 3 u 4 18 u 2 v 2 + 3 v 4 ,
y = ρ 4 1 3 . 3 u 13 v + 2 u 11 v 3 19 u 9 v 5 36 u 7 v 79 19 u 5 v + 2 u 3 v 11 + 3 u 3 v + 3 u v 13 3 u v 3 ,
x = ρ 5 1 35 . 5 u 17 80 u 15 v 2 300 u 13 v 4 160 u 11 v 6 + 550 u 9 v 8 + 880 u 7 v 10 + 420 u 5 v 12 + 7 u 5 70 u 3 v 2 35 u v 16 + 35 u v 4 ,
y = ρ 5 1 35 . 35 u 16 v 420 u 12 v 5 880 u 10 v 7 550 u 8 v 9 + 160 u 6 v 11 + 300 u 4 v 13 + 35 u 4 v + 80 u 2 v 15 70 u 2 v 3 5 v 17 + 7 v 5 ,
x = ρ 6 1 24 . 3 u 20 66 u 18 v 2 249 u 16 v 4 24 u 14 v 6 + 1014 u 12 v 8 + 1716 u 10 v 10 + 1014 u 8 v 12 24 u 6 v 14 249 u 4 v 16 66 u 2 v 18 + 3 v 20 + 4 u 6 60 u 4 v 2 + 60 u 2 v 4 4 v 6 ,
y = ρ 6 1 3 . 3 u 19 v 3 u 17 v 3 60 u 15 v 5 132 u 13 v 7 78 u 11 v 9 + 78 u 9 v 11 + 132 u 7 v 13 + 60 u 5 v 15 + 3 u 5 v + 3 u 3 v 17 10 u 3 v 3 3 u v 19 + 3 u v 5 .
Here, ρ = u 2 + v 2 1 .
Next, we continue our computations to find Q m ( x , y , z ) = 0 for the integers 3 m 7 . We compute the irreducible algebraic surface equation Q 3 ( x , y , z ) = 0 (see Figure 2, Middle) of the surface S 3 u , v in (8):
Q 3 ( x , y , z ) = 2 4 x 4 z 20 + 2 5 x 2 y 2 z 20 + 2 4 y 4 z 20 + 2 9 x 5 z 16 + 2 10 x 3 y z 16 + 2 5 x 3 z 18 + 2 9 x y 4 z 16 + 2 5 x y 2 z 18 2 12 7 x 6 z 12 2 11 3 2 5 x 4 y 2 z 12 + 2 9 7 x 4 z 14 2 15 3 x 2 y 4 z 12 + 2 11 3 x 2 y 2 z 14 + 2 3 3 x 2 z 16 2 11 17 y 6 z 12 + 2 9 5 y 4 z 14 + 8 y 2 z 16 + 2 18 x 7 z 8 + 2 15 23 x 5 y 2 z 8 2 15 3 x 5 z 10 + 2 16 11 x 3 y 4 z 8 2 12 3 × 17 x 3 y 2 z 10 + 2 7 43 x 3 z 12 + 2 15 7 x y 6 z 8 2 12 3 3 x y 4 z 10 + 2 7 3 × 13 x y 2 z 12 + 2 3 x z 14 + 2 19 x 6 z 6 + 2 16 x 4 y 4 z 4 + 2 15 29 x 4 y 2 z 6 2 13 3 2 x 4 z 8 + 2 17 x 2 y 6 z 4 + 2 17 3 x 2 y 4 z 6 2 9 3 × 5 2 x 2 y 2 z 8 + 2 9 7 x 2 z 10 + 2 16 y 8 z 4 2 15 y 6 z 6 + 2 9 3 4 y 4 z 8 + 2 10 y 2 z 10 + z 12 + 2 17 x 3 y 4 z 2 2 16 5 x 3 y 2 z 4 2 14 x 3 z 6 + 2 17 x y 6 z 2 2 15 3 2 x y 4 z 4 + 22 9 3 × 17 x y 2 z 6 + 2 6 17 x z 8 2 16 y 6 + 2 13 3 y 4 z 2 2 10 3 y 2 z 4 + 2 7 z 6 .
Therefore, Q 3 ( x , y , z ) = 0 is an algebraic minimal surface of the surface S 3 . Hence, we get the following irreducible algebraic surface equations (see Figure 2, Right for Q 4 )
Q 4 ( x , y , z ) = 3 7 x 6 z 34 + 3 8 x 4 y 2 z 34 + 3 8 x 2 y 4 z 34 + 3 7 y 6 z 34 + 2 × 3 7 5 2 x 7 z 29 + 106 other lower degree terms , Q 5 ( x , y , z ) = 2 16 x 8 z 52 + 2 18 x 6 y 2 z 52 + 2 17 3 x 4 y 4 z 52 + 2 18 x 2 y 6 z 52 + 2 16 y 8 z 52 + 197 other lower degree terms , Q 6 ( x , y , z ) = 5 11 x 10 z 74 + 5 12 x 8 y 2 z 74 + 2 × 5 12 x 6 y 4 z 74 + 2 × 5 12 x 4 y 6 z 74 + 5 12 x 2 y 8 z 74 + 332 other lower degree terms , Q 7 ( x , y , z ) = 2 12 3 13 x 12 z 100 + 2 13 3 14 x 10 y 2 z 100 + 2 12 3 14 5 x 8 y 4 z 100 + 2 14 3 13 5 x 6 y 6 z 100 + 2 12 3 14 5 x 4 y 8 z 100 + 512 other lower degree terms .

3.2. Class

Now, we introduce the class of the surfaces S m u , v for the integers 2 m 6 . The case m = 7 , marked with “*” in Table 2. Before we compute the irreducible algebraic surface equations Q ^ m ( a , b , c ) = 0 , we obtain the Gauss maps e m u , v (see Figure 3 for e 2 , e 3 , e 4 ) for the integers 2 m 7 of the surfaces S m u , v , and we generalize them as follows
e 2 = 2 u 2 v 2 λ 2 + 1 , 2 2 u v λ 2 + 1 , λ 2 1 λ 2 + 1 , e 3 = 2 u 3 3 u v 2 λ 3 + 1 , 2 3 u 2 v v 3 λ 3 + 1 , λ 3 1 λ 3 + 1 , e 4 = 2 u 4 6 u 2 v 2 + v 4 λ 4 + 1 , 2 4 u 3 v 4 u v 3 λ 4 + 1 , λ 4 1 λ 4 + 1 , e 5 = 2 u 5 10 u 3 v 2 + 5 u v 4 λ 5 + 1 , 2 5 u 4 v 10 u 2 v 3 + v 5 λ 5 + 1 , λ 5 1 λ 5 + 1 , e 6 = 2 u 6 15 u 4 v 2 + 15 u 2 v 4 v 6 λ 6 + 1 , 2 6 u 5 v 20 u 3 v 3 + 6 u v 5 λ 6 + 1 , λ 6 1 λ 6 + 1 , e 7 = 2 u 7 21 u 5 v 2 + 35 u 3 v 4 14 u v 6 λ 7 + 1 , 2 7 u 6 v 35 u 4 v 3 + 21 u 2 v 5 v 7 λ 7 + 1 , λ 7 1 λ 7 + 1 , e m = 2 R e ζ m ζ m + 1 , 2 I m ζ m ζ m + 1 , ζ m 1 ζ m + 1 , ζ = u + i v , ζ = λ .
Richmond’s minimal surface S 2 u , v in ( ) has class 12. See [23,24] for details. Using (6), (7), (10), and (11), with P 2 ( u , v ) = 4 u ( λ 3 3 ) 3 λ 2 + 1 , we get the surface S ^ 2 u , v in the following inhomogeneous tangential coordinates
a = 3 u 2 v 2 2 u ( λ 2 3 ) , b = 3 v ( λ 2 3 ) , c = 3 λ 2 1 4 u ( λ 2 3 ) .
Therefore, we obtain the irreducible algebraic surface equation Q ^ 2 ( a , b , c ) = 0 (see Figure 4, Left) of the surface S ^ 2 u , v :
Q ^ 2 ( a , b , c ) = 2 12 a 8 b 4 + 2 14 a 6 b 6 2 14 3 a 6 b 4 c 2 + 2 13 3 a 4 b 8 2 14 3 2 a 4 b 6 c 2 + 2 13 3 3 a 4 b 4 c 4 + 2 14 a 2 b 10 2 14 3 2 a 2 b 8 c 2 + 2 14 3 3 a 2 b 6 c 4 2 14 3 3 a 2 b 4 c 6 + 2 12 b 12 2 14 3 b 10 c 2 + 2 13 3 3 b 8 c 4 2 14 3 3 b 6 c 6 + 2 12 3 4 b 4 c 8 + 2 11 3 3 a 7 b 2 c + 2 11 3 4 a 5 b 4 c 2 11 3 2 19 a 5 b 2 c 3 + 2 11 3 4 a 3 b 6 c 2 12 3 2 19 a 3 b 4 c 3 + 2 11 3 3 11 a 3 b 2 c 5 + 2 11 3 3 a b 8 c 2 11 3 2 19 a b 6 c 3 + 2 11 3 3 11 a b 4 c 5 2 11 3 4 a b 2 c 7 2 8 3 4 a 8 2 7 3 4 7 a 6 b 2 + 2 9 3 5 a 6 c 2 2 7 3 6 a 4 c 4 2 7 3 4 5 a 2 c 6 + 2 9 3 5 a 4 b 2 c 2 2 8 3 6 a 4 c 4 2 9 3 5 a 2 b 4 c 2 2 7 3 5 5 a 2 b 2 c 4 2 7 3 4 b 8 2 9 3 5 b 6 c 2 + 2 7 3 5 b 4 c 4 2 8 3 4 b 2 c 6 + 2 5 3 7 a 5 c + 2 6 3 7 a 3 b 2 c 2 5 3 6 a 3 c 3 + 2 5 3 7 a b 4 c 2 5 3 6 a b 2 c 3 + 3 8 a 4 + 2 × 3 8 a 2 b 2 + 3 8 b 4 .
Hence, its class number is 12. Our findings agree with that of Richmond’s. Next, we continue our computations to find Q ^ m for integers 3 m 6 . To find the class of surface S 3 u , v , we use (8), (9), (10), and (11). By calculating P 3 ( u , v ) = 3 u ( λ 3 2 ) 2 λ 3 + 1 , we get the surface S ^ 3 inhomogeneous tangential coordinates as follows
a = 4 u 2 3 v 2 u 3 u ( λ 3 2 ) , b = 4 3 u 2 v 2 v 3 u ( λ 3 2 ) , c = 2 λ 3 1 3 u ( λ 3 2 ) ,
where λ = u 2 + v 2 , λ 3 2 , u , v 0 . In the inhomogeneous tangential coordinates a , b , c , we find the irreducible algebraic surface equation Q ^ 3 ( a , b , c ) = 0 (see Figure 4, Middle) of surface S ^ 3 ( u , v ) as follows
Q ^ 3 ( a , b , c ) = 3 18 a 24 3 20 a 22 b 2 + 2 3 3 20 a 22 c 2 2 2 3 20 a 20 b 4 + 2 6 3 20 a 20 b 2 c 2 + 229 other lower degree terms .
Then, Q ^ 3 ( a , b , c ) = 0 is an algebraic surface of S ^ 3 ( u , v ) . Next, we obtain the following functions P i ( u , v ) , where 2 i 7 , respectively,
P 2 = 4 u ( λ 2 3 ) 3 λ 2 + 1 , P 4 = 8 u 3 λ 4 5 15 λ 4 + 1 , P 6 = 12 u 5 λ 6 7 35 λ 6 + 1 , P 3 = 3 u ( λ 3 2 ) 2 λ 3 + 1 , P 5 = 5 u 2 λ 5 3 6 λ 5 + 1 , P 7 = 7 u 3 λ 7 4 12 λ 7 + 1 .
Corollary 2.
Considering the above odd and even integers m of the functions P m , for the integers k 1 , we have the following generalizations
P 2 k = 4 k u 2 k 1 λ 2 k 2 k + 1 2 k 1 2 k + 1 λ 2 k + 1 , P 2 k + 1 = 2 k + 1 u k λ 2 k + 1 k + 1 k k + 1 λ 2 k + 1 + 1 .
We reveal the surfaces S ^ 2 and S ^ 3 . By using S 4 S 7 , e 4 e 7 , respectively, and also (10), (11), we obtain the following surfaces S ^ m ( u , v ) = a ( u , v ) , b ( u , v ) , c ( u , v ) :
S ^ 2 = 3 u 2 v 2 2 u ( λ 2 3 ) , 3 v ( λ 2 3 ) , 3 λ 2 1 4 u ( λ 2 3 ) , S ^ 3 = 4 u 3 3 u v 2 3 u ( λ 3 2 ) , 4 3 u 2 v v 3 3 u ( λ 3 2 ) , 2 λ 3 1 3 u ( λ 3 2 ) , S ^ 4 = 15 u 4 6 u 2 v 2 + v 4 4 u 3 λ 4 5 , 15 u 3 v u v 3 u 3 λ 4 5 , 15 λ 4 1 8 u 3 λ 4 5 , S ^ 5 = 12 u 5 10 u 3 v 2 + 5 u v 4 5 u 2 λ 5 3 , 12 5 u 4 v 10 u 2 v 3 + v 5 5 u 2 λ 5 3 , 6 λ 5 1 5 u 2 λ 5 3 , S ^ 6 = 35 u 6 15 u 4 v 2 + 15 u 2 v 4 v 6 6 u 5 λ 6 7 , 35 6 u 5 v 20 u 3 v 3 + 6 u v 5 6 u 5 λ 6 7 , 35 λ 6 1 12 u 5 λ 6 7 , S ^ 7 = 24 u 7 21 u 5 v 2 + 35 u 3 v 4 14 u v 6 7 u 3 λ 7 4 , 24 7 u 6 v 35 u 4 v 3 + 21 u 2 v 5 v 7 7 u 3 λ 7 4 , 12 λ 7 1 7 u 3 λ 7 4 .
Considering equations above, for odd and even numbers m, we get the following:
Corollary 3.
For the surfaces S ^ m ( u , v ) , we have the following generalizations
S ^ 2 k ( u , v ) = 2 k 1 2 k + 1 4 k u 2 k 1 λ 2 k 2 k + 1 2 R e ζ 2 k 2 I m ζ 2 k λ 2 k 1 = a b c , S ^ 2 k + 1 ( u , v ) = k k + 1 2 k + 1 u k λ 2 k + 1 k + 1 2 R e ζ 2 k + 1 2 I m ζ 2 k + 1 λ 2 k + 1 1 = a b c ,
where the integers k 1 , ζ = u + i v and ζ = λ .
For the integers m = 4 , 5 , 6 , we obtain the following irreducible algebraic surface equations (see Figure 4, Right for Q ^ 4 ):
Q ^ 4 ( a , b , c ) = 2 72 a 32 b 8 + 2 76 a 30 b 10 2 76 3 × 5 a 30 b 8 c 2 + 2 75 3 × 5 a 28 b 12 2 76 3 2 5 2 a 28 b 10 c 2 + 725 other lower degree terms , Q ^ 5 ( a , b , c ) = = 5 50 a 60 + 5 52 a 58 b 2 2 3 3 × 5 52 a 58 c 2 + 2 2 3 × 5 52 a 56 b 4 2 6 3 2 5 52 a 56 b 2 c 2 + 1991 other lower degree terms , Q ^ 6 ( a , b , c ) = 2 84 3 72 a 72 b 12 + 2 86 3 74 a 70 b 14 2 86 3 74 5 × 7 a 70 b 12 c 2 + 2 85 3 74 5 × 7 a 68 b 16 2 86 3 74 5 2 7 2 a 68 b 14 c 2 + 4390 other lower degree terms .

4. Conclusions

We have tried some standard techniques in the elimination theory to reveal the irreducible algebraic surface equations of the surfaces S m u , v in E 3 . The Sylvester method by hand works for Q 2 ( x , y , z ) = 0 . The projective (Macaulay) and sparse multivariate resultants were implemented on the Maple software [26] package multi-res for Q m ( x , y , z ) = 0 and Q ^ m ( a , b , c ) = 0 .
Maple’s native implicitization command was Implicitize, and implicitization was based on Maples’ native implementation of Gröbner Basis. Later, we implemented the method in [25] (Chapter 3, p. 128) on Maple. We only succeeded for m = 2 , 3 in all above methods under reasonable time.
For m = 4 , 5 , 6 , 7 , the successful method we tried was to compute the equations by defining the elimination ideal using the Gröbner Basis package FGb of Faugère in [27].
The time required to output the irreducible algebraic surface equations Q m ( x , y , z ) = 0 (for integers 2 m 7 ) and Q ^ m ( a , b , c ) = 0 (for integers 2 m 6 ), polynomials defining the elimination ideal, was under reasonable seconds as determined by Table 1 and Table 2.
Calculation of the class for the irreducible algebraic surface equation Q ^ 7 ( a , b , c ) = 0 of S 7 u , v , marked with “*” in Table 2, was rejected (i.e., “out of memory”) by Maple 17 on a laptop Pentium Core i5-4310M 2.00 GHz, 4 GB RAM, with the time given in CPU seconds.
Finally, we give the following:
Conjecture 1. 
The degree number of the irreducible algebraic surfaces Q m ( x , y , z ) = 0 , and the class number of the irreducible algebraic surfaces Q ^ m ( a , b , c ) = 0 for the ( ζ m , ζ m ) -type real minimal surfaces are equal to the 2 m m + 1 , where the integers m 2 .

Author Contributions

E.G. gave the idea for ( ζ m , ζ m ) -type algebraic minimal surfaces in 3-space. Then, E.G. and Ö.K. checked and polished the draft. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

Not applicable.

Acknowledgments

All the authors are grateful to the anonymous referees for their excellent suggestions, which greatly improved the presentation of the paper.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Darboux, G. Leçons Sur la Théorie Générale des Surfaces, I, II; [Lessons on the general theory of surfaces, I, II], Reprint of the second (1914) edition (I) and the second (1915) edition (II), Les Grands Classiques Gauthier-Villars [Gauthier-Villars Great Classics], Cours de Géométrie de la Faculté des Sciences [Course on Geometry of the Faculty of Science]; Éditions Jacques Gabay: Sceaux, France, 1993. (In French) [Google Scholar]
  2. Darboux, G. Leçons Sur la Théorie Générale des Surfaces, III, IV; [Lessons on the general theory of surfaces, III, IV], Reprint of the 1894 original (III) and the 1896 original (IV), Les Grands Classiques Gauthier-Villars [Gauthier-Villars Great Classics], Cours de Géométrie de la Faculté des Sciences [Course on Geometry of the Faculty of Science]; Éditions Jacques Gabay: Sceaux, France, 1993. (In French) [Google Scholar]
  3. Dierkes, U.; Hildebrandt, S.; Sauvigny, F. Minimal Surfaces, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
  4. Fomenko, A.T.; Tuzhilin, A.A. Elements of the Geometry and Topology of Minimal Surfaces in Three-Dimensional Space; Translated from the Russian by E.J.F. Primrose, Translations of Mathematical Monographs, 93; American Math. Soc.: Providence, RI, USA, 1991. [Google Scholar]
  5. Gray, A.; Salamon, S.; Abbena, E. Modern Differential Geometry of Curves and Surfaces with Mathematica, 3rd ed.; Chapman & Hall: London, UK; CRC Press: Boca Raton, FL, USA, 2006. [Google Scholar]
  6. Nitsche, J.C.C. Lectures on Minimal Surfaces, Introduction, Fundamentals, Geometry and Basic Boundary Value Problems; Cambridge Un. Press: Cambridge, UK, 1989; Volume 1. [Google Scholar]
  7. Osserman, R. A Survey of Minimal Surfaces; Van Nostrand Reinhold Co.: New York, NY, USA, 1969. [Google Scholar]
  8. Schwarz, H.A. Miscellen aus dem gebiete der minimalflachen. J. Die Reine Angew. Math. (Crelle’s J.) 1875, 80, 280–300. [Google Scholar]
  9. Spivak, M. A Comprehensive Introduction to Differential Geometry, 3rd ed.; Publish or Perish, Inc.: Houston, TX, USA, 1999; Volume IV. [Google Scholar]
  10. Lie, S. Beiträge zur theorie der minimalflächen. Math. Ann. 1878, 14, 331–416. [Google Scholar] [CrossRef] [Green Version]
  11. Richmond, H.W. On minimal surfaces. Trans. Camb. Philos. Soc. 1901, 18, 324–332. [Google Scholar] [CrossRef]
  12. Small, A.J. Minimal surfaces in R3 and algebraic curves. Differ. Geom. Appl. 1992, 2, 369–384. [Google Scholar] [CrossRef] [Green Version]
  13. Weierstrass, K. Untersuchungen über Die Flächen, Deren Mittlere Krümmung überall Gleich Null ist; Akademie der Wissenschaften zu Berlin: Berlin, Germany, 1866; pp. 612–625. [Google Scholar]
  14. Weierstrass, K. Über Die Analytische Darstellbarkeit Sogenannter Willkürlicher Functionen Einer Reellen Veränderlichen; Sitzungsberichte der Akademie zu Berlin: Berlin, Germany, 1885; pp. 633–639, 789–805. [Google Scholar]
  15. Small, A.J. Linear structures on the collections of minimal surfaces in R3 and R4. Ann. Glob. Anal. Geom. 1994, 12, 97–101. [Google Scholar] [CrossRef]
  16. Enneper, A. Untersuchungen über einige Punkte aus der allgemeinen Theorie der Flächen. Math. Ann. 1870, 2, 58–623. [Google Scholar] [CrossRef] [Green Version]
  17. Güler, E. The algebraic surfaces of the Enneper family of maximal surfaces in three dimensional Minkowski space. Axioms 2022, 11, 4. [Google Scholar] [CrossRef]
  18. Güler, E.; Kişi, Ö.; Konaxis, C. Implicit equation of the Henneberg-type minimal surface in the four dimensional Euclidean space. Mathematics 2018, 6, 279. [Google Scholar] [CrossRef] [Green Version]
  19. Güler, E.; Zambak, V. Henneberg’s algebraic surfaces in Minkowski 3-space. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2019, 68, 1761–1773. [Google Scholar] [CrossRef]
  20. Henneberg, L. Über Salche Minimalfläche, Welche eine Vorgeschriebene Ebene Curve sur Geodätishen Line Haben. Ph.D. Dissertation, Eidgenössisches Polythechikum, Zürich, Switzerland, 1875. [Google Scholar]
  21. Henneberg, L. Über die evoluten der ebenen algebraischen kurven. Vierteljahr. Naturforsch. Ges. Zur. 1876, 21, 71–72. [Google Scholar]
  22. Ribaucour, A. Etude des Elassoides ou Surfaces a Courbure Moyenne Nulle; Hayez: Bruxelles, Belgium, 1882; Volume 44, pp. 1–236. [Google Scholar]
  23. Richmond, H.W. Uber minimalflachen. Math. Ann. 1901, 54, 323–324. [Google Scholar] [CrossRef] [Green Version]
  24. Richmond, H.W. On the simplest algebraic minimal curves, and the derived real minimal surfaces. Trans. Camb. Philos. Soc. 1904, 19, 69–82. [Google Scholar]
  25. Cox, D.; Little, J.; O’Shea, D. Ideals, Varieties, and Algorithms, An Introduction to Computational Algebraic Geometry and Commutative Algebra, 3rd ed.; Undergraduate Texts in Mathematics; Springer: New York, NY, USA, 2007. [Google Scholar]
  26. Maple Software, Version 17; Waterloo Maple Inc.: Waterloo, ON, Canada, 2017. Available online: https://www.maplesoft.com/ (accessed on 10 November 2021).
  27. Faugère, J.C. FGb: A library for computing Gröbner bases. In Proceedings of the Third International Congress Conference on Mathematical Software (ICMS’10), Kobe, Japan, 13–17 September 2010; Springer: Berlin/Heidelberg, Germany, 2010; pp. 84–87. [Google Scholar]
Figure 1. Minimal surfaces (Left) S 2 r , θ , (Middle) S 3 r , θ , (Right) S 4 r , θ .
Figure 1. Minimal surfaces (Left) S 2 r , θ , (Middle) S 3 r , θ , (Right) S 4 r , θ .
Axioms 11 00026 g001
Figure 2. Algebraic minimal surfaces (Left) Q 2 ( x , y , z ) = 0 , (Middle) Q 3 ( x , y , z ) = 0 , (Right) Q 4 ( x , y , z ) = 0 .
Figure 2. Algebraic minimal surfaces (Left) Q 2 ( x , y , z ) = 0 , (Middle) Q 3 ( x , y , z ) = 0 , (Right) Q 4 ( x , y , z ) = 0 .
Axioms 11 00026 g002
Figure 3. The Gauss maps (Left) e 2 u , v , (Middle) e 3 u , v , (Right) e 4 u , v .
Figure 3. The Gauss maps (Left) e 2 u , v , (Middle) e 3 u , v , (Right) e 4 u , v .
Axioms 11 00026 g003
Figure 4. Algebraic surfaces (Left) Q ^ 2 ( a , b , c ) = 0 , (Middle) Q ^ 3 ( a , b , c ) = 0 , (Right) Q ^ 4 ( a , b , c ) = 0 .
Figure 4. Algebraic surfaces (Left) Q ^ 2 ( a , b , c ) = 0 , (Middle) Q ^ 3 ( a , b , c ) = 0 , (Right) Q ^ 4 ( a , b , c ) = 0 .
Axioms 11 00026 g004
Table 1. Some results of irreducible algebraic surfaces Q m ( x , y , z ) = 0 .
Table 1. Some results of irreducible algebraic surfaces Q m ( x , y , z ) = 0 .
Algebraic SurfaceDegree of SurfaceNumber of TermsGröbner Time (s)FGb Time (s)
Q 2 12190.4060.025
Q 3 245125.2470.070
Q 4 40111*4.118
Q 5 60202*68.367
Q 6 84337*1352.439
Q 7 112517*6535.346
Q 8 ****
Q m 2 m ( m + 1 ) ***
Table 2. Some results of irreducible algebraic surfaces Q ^ m ( a , b , c ) = 0 .
Table 2. Some results of irreducible algebraic surfaces Q ^ m ( a , b , c ) = 0 .
Algebraic SurfaceClass of SurfaceNumber of TermsGröbner Time (s)FGb Time (s)
Q ^ 2 12460.3750.025
Q ^ 3 2423416.8130.207
Q ^ 4 40730*1.726
Q ^ 5 601996*311.201
Q ^ 6 844395*626.654
Q ^ 7 ****
Q ^ m 2 m ( m + 1 ) ***
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Güler, E.; Kişi, Ö. (ζ−m, ζm)-Type Algebraic Minimal Surfaces in Three-Dimensional Euclidean Space. Axioms 2022, 11, 26. https://doi.org/10.3390/axioms11010026

AMA Style

Güler E, Kişi Ö. (ζ−m, ζm)-Type Algebraic Minimal Surfaces in Three-Dimensional Euclidean Space. Axioms. 2022; 11(1):26. https://doi.org/10.3390/axioms11010026

Chicago/Turabian Style

Güler, Erhan, and Ömer Kişi. 2022. "(ζ−m, ζm)-Type Algebraic Minimal Surfaces in Three-Dimensional Euclidean Space" Axioms 11, no. 1: 26. https://doi.org/10.3390/axioms11010026

APA Style

Güler, E., & Kişi, Ö. (2022). (ζ−m, ζm)-Type Algebraic Minimal Surfaces in Three-Dimensional Euclidean Space. Axioms, 11(1), 26. https://doi.org/10.3390/axioms11010026

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop