(ζ−m, ζm)-Type Algebraic Minimal Surfaces in Three-Dimensional Euclidean Space
Abstract
:1. Introduction
2. Type Minimal Surfaces
3. Degree and Class of Minimal Surfaces
3.1. Degree
3.2. Class
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Darboux, G. Leçons Sur la Théorie Générale des Surfaces, I, II; [Lessons on the general theory of surfaces, I, II], Reprint of the second (1914) edition (I) and the second (1915) edition (II), Les Grands Classiques Gauthier-Villars [Gauthier-Villars Great Classics], Cours de Géométrie de la Faculté des Sciences [Course on Geometry of the Faculty of Science]; Éditions Jacques Gabay: Sceaux, France, 1993. (In French) [Google Scholar]
- Darboux, G. Leçons Sur la Théorie Générale des Surfaces, III, IV; [Lessons on the general theory of surfaces, III, IV], Reprint of the 1894 original (III) and the 1896 original (IV), Les Grands Classiques Gauthier-Villars [Gauthier-Villars Great Classics], Cours de Géométrie de la Faculté des Sciences [Course on Geometry of the Faculty of Science]; Éditions Jacques Gabay: Sceaux, France, 1993. (In French) [Google Scholar]
- Dierkes, U.; Hildebrandt, S.; Sauvigny, F. Minimal Surfaces, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Fomenko, A.T.; Tuzhilin, A.A. Elements of the Geometry and Topology of Minimal Surfaces in Three-Dimensional Space; Translated from the Russian by E.J.F. Primrose, Translations of Mathematical Monographs, 93; American Math. Soc.: Providence, RI, USA, 1991. [Google Scholar]
- Gray, A.; Salamon, S.; Abbena, E. Modern Differential Geometry of Curves and Surfaces with Mathematica, 3rd ed.; Chapman & Hall: London, UK; CRC Press: Boca Raton, FL, USA, 2006. [Google Scholar]
- Nitsche, J.C.C. Lectures on Minimal Surfaces, Introduction, Fundamentals, Geometry and Basic Boundary Value Problems; Cambridge Un. Press: Cambridge, UK, 1989; Volume 1. [Google Scholar]
- Osserman, R. A Survey of Minimal Surfaces; Van Nostrand Reinhold Co.: New York, NY, USA, 1969. [Google Scholar]
- Schwarz, H.A. Miscellen aus dem gebiete der minimalflachen. J. Die Reine Angew. Math. (Crelle’s J.) 1875, 80, 280–300. [Google Scholar]
- Spivak, M. A Comprehensive Introduction to Differential Geometry, 3rd ed.; Publish or Perish, Inc.: Houston, TX, USA, 1999; Volume IV. [Google Scholar]
- Lie, S. Beiträge zur theorie der minimalflächen. Math. Ann. 1878, 14, 331–416. [Google Scholar] [CrossRef] [Green Version]
- Richmond, H.W. On minimal surfaces. Trans. Camb. Philos. Soc. 1901, 18, 324–332. [Google Scholar] [CrossRef]
- Small, A.J. Minimal surfaces in R3 and algebraic curves. Differ. Geom. Appl. 1992, 2, 369–384. [Google Scholar] [CrossRef] [Green Version]
- Weierstrass, K. Untersuchungen über Die Flächen, Deren Mittlere Krümmung überall Gleich Null ist; Akademie der Wissenschaften zu Berlin: Berlin, Germany, 1866; pp. 612–625. [Google Scholar]
- Weierstrass, K. Über Die Analytische Darstellbarkeit Sogenannter Willkürlicher Functionen Einer Reellen Veränderlichen; Sitzungsberichte der Akademie zu Berlin: Berlin, Germany, 1885; pp. 633–639, 789–805. [Google Scholar]
- Small, A.J. Linear structures on the collections of minimal surfaces in R3 and R4. Ann. Glob. Anal. Geom. 1994, 12, 97–101. [Google Scholar] [CrossRef]
- Enneper, A. Untersuchungen über einige Punkte aus der allgemeinen Theorie der Flächen. Math. Ann. 1870, 2, 58–623. [Google Scholar] [CrossRef] [Green Version]
- Güler, E. The algebraic surfaces of the Enneper family of maximal surfaces in three dimensional Minkowski space. Axioms 2022, 11, 4. [Google Scholar] [CrossRef]
- Güler, E.; Kişi, Ö.; Konaxis, C. Implicit equation of the Henneberg-type minimal surface in the four dimensional Euclidean space. Mathematics 2018, 6, 279. [Google Scholar] [CrossRef] [Green Version]
- Güler, E.; Zambak, V. Henneberg’s algebraic surfaces in Minkowski 3-space. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2019, 68, 1761–1773. [Google Scholar] [CrossRef]
- Henneberg, L. Über Salche Minimalfläche, Welche eine Vorgeschriebene Ebene Curve sur Geodätishen Line Haben. Ph.D. Dissertation, Eidgenössisches Polythechikum, Zürich, Switzerland, 1875. [Google Scholar]
- Henneberg, L. Über die evoluten der ebenen algebraischen kurven. Vierteljahr. Naturforsch. Ges. Zur. 1876, 21, 71–72. [Google Scholar]
- Ribaucour, A. Etude des Elassoides ou Surfaces a Courbure Moyenne Nulle; Hayez: Bruxelles, Belgium, 1882; Volume 44, pp. 1–236. [Google Scholar]
- Richmond, H.W. Uber minimalflachen. Math. Ann. 1901, 54, 323–324. [Google Scholar] [CrossRef] [Green Version]
- Richmond, H.W. On the simplest algebraic minimal curves, and the derived real minimal surfaces. Trans. Camb. Philos. Soc. 1904, 19, 69–82. [Google Scholar]
- Cox, D.; Little, J.; O’Shea, D. Ideals, Varieties, and Algorithms, An Introduction to Computational Algebraic Geometry and Commutative Algebra, 3rd ed.; Undergraduate Texts in Mathematics; Springer: New York, NY, USA, 2007. [Google Scholar]
- Maple Software, Version 17; Waterloo Maple Inc.: Waterloo, ON, Canada, 2017. Available online: https://www.maplesoft.com/ (accessed on 10 November 2021).
- Faugère, J.C. FGb: A library for computing Gröbner bases. In Proceedings of the Third International Congress Conference on Mathematical Software (ICMS’10), Kobe, Japan, 13–17 September 2010; Springer: Berlin/Heidelberg, Germany, 2010; pp. 84–87. [Google Scholar]
Algebraic Surface | Degree of Surface | Number of Terms | Gröbner Time (s) | FGb Time (s) |
---|---|---|---|---|
Q | 12 | 19 | 0.406 | 0.025 |
Q | 24 | 51 | 25.247 | 0.070 |
Q | 40 | 111 | * | 4.118 |
Q | 60 | 202 | * | 68.367 |
Q | 84 | 337 | * | 1352.439 |
Q | 112 | 517 | * | 6535.346 |
Q | * | * | * | * |
⋮ | ⋮ | ⋮ | ⋮ | ⋮ |
Q | * | * | * |
Algebraic Surface | Class of Surface | Number of Terms | Gröbner Time (s) | FGb Time (s) |
---|---|---|---|---|
12 | 46 | 0.375 | 0.025 | |
24 | 234 | 16.813 | 0.207 | |
40 | 730 | * | 1.726 | |
60 | 1996 | * | 311.201 | |
84 | 4395 | * | 626.654 | |
* | * | * | * | |
⋮ | ⋮ | ⋮ | ⋮ | ⋮ |
* | * | * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Güler, E.; Kişi, Ö. (ζ−m, ζm)-Type Algebraic Minimal Surfaces in Three-Dimensional Euclidean Space. Axioms 2022, 11, 26. https://doi.org/10.3390/axioms11010026
Güler E, Kişi Ö. (ζ−m, ζm)-Type Algebraic Minimal Surfaces in Three-Dimensional Euclidean Space. Axioms. 2022; 11(1):26. https://doi.org/10.3390/axioms11010026
Chicago/Turabian StyleGüler, Erhan, and Ömer Kişi. 2022. "(ζ−m, ζm)-Type Algebraic Minimal Surfaces in Three-Dimensional Euclidean Space" Axioms 11, no. 1: 26. https://doi.org/10.3390/axioms11010026
APA StyleGüler, E., & Kişi, Ö. (2022). (ζ−m, ζm)-Type Algebraic Minimal Surfaces in Three-Dimensional Euclidean Space. Axioms, 11(1), 26. https://doi.org/10.3390/axioms11010026