The Influence Factor Analysis of Symmetrical Half-Bridge Power Converter through Regression, Rough Set and GM(1,N) Model
Abstract
:1. Introduction
2. The Mathematical Model of Soft Computing
2.1. Regression Analysis
2.2. Rough Set Method
- i.
- is called the universal set;
- ii.
- is called the attribute set.
- i.
- is called the domain of universal set;
- ii.
- is called the range.
- i.
- is the maximum value of the continuous attribute;
- ii.
- is the minimum value of the continuous attribute.
2.3. GM(1,N) Model
- i.
- and are coefficients;
- ii.
- is a standard sequence;
- iii.
- are inspected sequences;
- iv.
- .
3. Real Example and Verification
3.1. The Circuit of Symmetrical Half-Bridge Power Converter
3.2. The Experimental Data
4. Calculation and Analysis
4.1. Regression Analysis
4.2. Rough Set Method
4.3. GM(1,N) Method
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Wu, Y.L. Switching Power Converter; Wensheng Book Store: New Taipei City, Taiwan, 2018. [Google Scholar]
- Head Line Daily, Topological Knowledge Collection of Half-Bridge and Full-Bridge Converters, Taipei. Available online: https://kknews.cc/zh-tw/society/revjzjo.html (accessed on 18 January 2017).
- Ma, G.; Qu, W.L.; Yu, G.; Liu, Y.Y.; Liang, N.G.; Li, W.Z. A zero-voltage- switching bidirectional DC-DC converter with state analysis and soft-switching- oriented design consideration. IEEE Trans. Ind. Electron. 2009, 56, 2174–2184. [Google Scholar]
- Chien, C.H. Zero-Voltage Switching Resonant Converters for High Input Voltage Applications. Ph.D. Thesis, Institute of Microelectronics, National Cheng Kung University, Tainan, Taiwan, 2013. [Google Scholar]
- Lin, B.R.; Lin, Y.K. An investigation into a ZVS resonant converter to achieve wide voltage operation. J. Innov. Technol. 2021, 3, 65–72. [Google Scholar]
- Qin, H. Wide-range high voltage input LLC auxiliary power supply. Int. Core J. Eng. 2021, 7, 291–298. [Google Scholar]
- Lin, B.R. Analysis of a DC converter with low primary current loss and balance voltage and current. Electronics 2019, 8, 439. [Google Scholar] [CrossRef] [Green Version]
- Ranganathan, S.A. Noyal Doss Mohan, Formulation and analysis of single switch high gain hybrid DC to DC converter for high power applications. Electronics 2021, 10, 2445. [Google Scholar] [CrossRef]
- Adly, M.; Strunz, K. Irradiance-adaptive PV module integrated converter for high efficiency and power quality in standalone and DC microgrid applications. IEEE Trans. Ind. Electron. 2018, 65, 436–446. [Google Scholar] [CrossRef]
- Ho, K.Y. Design and Implementation of an AC/DC Converter with High Efficiency and High Power Factor. Master’s Thesis, Department of Electrical Engineering, Chienkuo Technology University, Chunghua, Taiwan, 2015. [Google Scholar]
- Yeh, C.L. Conversion Efficiency Analysis for the Effect of Resonant Inductance in a Half-Bridge LLC Series Resonant Converter. Master’s Thesis, Department of Electrical Engineering, National Sun Yat-sen University, Kaohsiung, Taiwan, 2017. [Google Scholar]
- Chen, M.S. Design and Implementation of Bidirectional Voltage-Doubler Front-End Converter for Single-Sensor Switched Reluctance Motor Drives. Master’s Thesis, The College of Electrical Engineering and Computer Science, National Chiao Tung Universitym, Hsinchu, Taiwan, 2018. [Google Scholar]
- Lee, I.O.; Lee, J.Y. A high-power DC-DC converter topology for battery charging applications. Energies 2017, 10, 871. [Google Scholar] [CrossRef]
- Wu, X.W. Converter and control of bidirectional DC/DC converter for power battery testing. Int. Core J. Eng. 2020, 6, 375–385. [Google Scholar]
- Chakraborty, S.; Vu, H.N.; Hasan, M.M.; Tran, D.D.; el Baghdadi, M.; Hegazy, O. DC-DC converter topologies for electric vehicles, plug-in hybrid electric vehicles and fast charging stations: State of the art and future trends. Energies 2019, 12, 1569. [Google Scholar] [CrossRef] [Green Version]
- Szymanski, J.R.; Mortka, M.Z.; Wojciechowski, D.; Poliakov, N. Unidirectional DC/DC converter with voltage inverter for fast charging of electric vehicle batteries. Energies 2020, 13, 4791. [Google Scholar] [CrossRef]
- Tran, D.; Chakraborty, S.; Lan, Y.F.; Mierlo, J.V.; Hegazy, O. Optimized multiport DC/DC converter for vehicle drivetrains: Topology and design optimization. Appl. Sci. 2018, 8, 1351. [Google Scholar] [CrossRef] [Green Version]
- Lin, B.R.; Ko, M.C. Wide voltage range DC/DC converter for railway auxiliary power units. J. Innov. Technol. 2021, 3, 69–78. [Google Scholar]
- Wang, H.Y. Simulation research on energy storage bidirectional DC-DC converter in ship microgrids. Int. Core J. Eng. 2019, 5, 117–122. [Google Scholar]
- Sato, Y.S.; Uno, M.T.; Nagata, H.K. Nonisolated multiport converters based on integration of PWM converter and phase-shift-switched capacitor converter. IEEE Trans. Power Electron. 2020, 35, 2020. [Google Scholar] [CrossRef]
- Wang, C.M.; Lin, C.Y.; Wang, H.L. Analysis and design of a zero-voltage- switching PWM DC-DC converter without auxiliary circuit. J. Innov. Technol. 2021, 3, 1–5. [Google Scholar]
- Chaour, I.S.; Fakhfakh, A.; Kanoun, O. Enhanced passive RF-DC converter circuit efficiency for low RF energy harvesting. Sensors 2017, 17, 546. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmidt, S.; Oberrath, J.; Mercorelli, P.A. Sensor fault detection scheme as a functional safety feature for DC-DC Converters. Sensors 2021, 21, 6516. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.; Park, S.J.; Lim, S.K. Improvement of multilevel DC/DC converter for e-mobility charging station. Electronics 2020, 9, 2037. [Google Scholar] [CrossRef]
- Wang, C.M. A novel single-stage high-power-factor electronic ballast with symmetrical half-bridge topology. IEEE Trans. Ind. Electron. 2008, 55, 969–972. [Google Scholar] [CrossRef]
- Tang, Y.; Blaabjerg, F.; Loh, C.L.; Jin, C. Decoupling of fluctuating power in single-phase systems through a symmetrical half-bridge circuit. IEEE Trans. Power Electron. 2015, 30, 1855–1865. [Google Scholar] [CrossRef]
- Changchien, S.K. Houng-Ming Lee and Hsiau-Hsian Nien, Applying rough set in the influence factor analysis of symmetrical half-bridge power converter. In Proceedings of the ICSSMET 2020, Chiayi, Taiwan, 26 November 2020; pp. 41–45. [Google Scholar]
- Wen, K.L.; You, M.L. Apply Soft Computing in Data Mining, 2nd ed.; Taiwan Kansei Information Association: Taichung, Taiwan, 2018. [Google Scholar]
- Chang, K.H.; Wang, J.R.; Wen, K.L. The analysis of influence factor in quad-rotor unmanned aerial vehicle by using regression method. J. Quant. Manag. 2017, 13, 5-1–5-9. [Google Scholar]
- Jian, J.L.; Huang, C.C.; Chen, H.C.; Wen, K.L. Apply regression analysis in correlation of influence factors on the power efficiency at electronic air circulation heaters. In Proceedings of the ICSSMET, Chiayi, Taiwan, 26 November 2020; pp. 31–35. [Google Scholar]
- Wen, K.L.; You, M.L. Rough Set-the Decision of Uncertainty. Wunan Publisher: Taipei, Taiwan, 2020. [Google Scholar]
- Wen, K.L.; You, M.L. The Grey Prediction and Its Application in Soft Computing; Taiwan Kansei Information Society: Taichung, Taiwan, 2019. [Google Scholar]
- Wu, C.E. Applying GM(0,N) Model to the Design of Forward Converter. Master’s Thesis, Department of Electrical Engineering, Chienkuo Technology University, Chunghua, Taiwan, 2018. [Google Scholar]
Parameter | Ii (A) | Io (A) | Pi (W) | Vi (V) | Vo (V) | Po (W) | Duty Cycle (%) | Efficiency (%) |
---|---|---|---|---|---|---|---|---|
01 | 0.084 | 0.632 | 13.02 | 155.0 | 19.016 | 12 | 35 | 92.2 |
02 | 0.164 | 1.261 | 25.42 | 155.0 | 19.006 | 24 | 35 | 94.4 |
03 | 0.246 | 1.893 | 38.13 | 155.0 | 19.006 | 36 | 35 | 94.4 |
04 | 0.328 | 2.525 | 50.84 | 155.0 | 19.010 | 48 | 35 | 94.4 |
05 | 0.412 | 3.158 | 63.86 | 155.0 | 19.002 | 60 | 35 | 94.0 |
06 | 0.497 | 3.792 | 77.04 | 155.0 | 19.994 | 72 | 35 | 93.5 |
07 | 0.590 | 4.426 | 91.45 | 155.0 | 19.998 | 84 | 35 | 91.9 |
No. | Io/Ii | Vo/Vi | Po/Pi | |
---|---|---|---|---|
01 | 7.523810 | 0.122684 | 0.944138 | 0.922 |
02 | 7.689024 | 0.122619 | 0.944138 | 0.944 |
03 | 7.695122 | 0.122619 | 0.944138 | 0.944 |
04 | 7.698171 | 0.122645 | 0.939555 | 0.944 |
05 | 7.665049 | 0.122594 | 0.934579 | 0.940 |
06 | 7.629779 | 0.128994 | 0.918535 | 0.935 |
07 | 7.501695 | 0.129019 | 0.921659 | 0.919 |
Parameter | |||
---|---|---|---|
Regression analysis | 0.1265 | −0.1437 | −0.0123 |
Correlation | Positive correlation | Negative correlation | Negative correlation |
Group/Parameter | ||||
---|---|---|---|---|
01 | 1 | 1 | 4 | 1 |
02 | 4 | 1 | 4 | 4 |
03 | 4 | 1 | 4 | 4 |
04 | 4 | 1 | 4 | 4 |
05 | 4 | 1 | 3 | 4 |
06 | 3 | 4 | 1 | 3 |
07 | 1 | 4 | 1 | 1 |
Grade/Parameter | |||
---|---|---|---|
Four grade | 0.8571 | 0 | 0 |
Rank | 1 | 2 | 2 |
Grade/Parameter | |||
---|---|---|---|
Weighting | 0.2478 | 0.2141 | 0.0091 |
Rank | 1 | 2 | 3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Changchien, S.-K.; Wen, K.-L. The Influence Factor Analysis of Symmetrical Half-Bridge Power Converter through Regression, Rough Set and GM(1,N) Model. Axioms 2022, 11, 18. https://doi.org/10.3390/axioms11010018
Changchien S-K, Wen K-L. The Influence Factor Analysis of Symmetrical Half-Bridge Power Converter through Regression, Rough Set and GM(1,N) Model. Axioms. 2022; 11(1):18. https://doi.org/10.3390/axioms11010018
Chicago/Turabian StyleChangchien, Shih-Kuen, and Kun-Li Wen. 2022. "The Influence Factor Analysis of Symmetrical Half-Bridge Power Converter through Regression, Rough Set and GM(1,N) Model" Axioms 11, no. 1: 18. https://doi.org/10.3390/axioms11010018
APA StyleChangchien, S. -K., & Wen, K. -L. (2022). The Influence Factor Analysis of Symmetrical Half-Bridge Power Converter through Regression, Rough Set and GM(1,N) Model. Axioms, 11(1), 18. https://doi.org/10.3390/axioms11010018