Polynomial-Exponential Bounds for Some Trigonometric and Hyperbolic Functions
Abstract
:1. Introduction
2. Main Theorems
3. Preliminaries and Lemmas
- (i)
- and are increasing(strictly increasing) on if is increasing(strictly increasing) on
- (ii)
- and are decreasing(strictly decreasing) on if is decreasing(strictly decreasing) on
4. Proofs of Main Results
5. Applications
6. Final Discussion and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Abramowitz, M.; Stegun, I.A. (Eds.) Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables; Applied Mathematics Series; Ninth Printing; National Bureau of Standards: Washington, DC, USA, 1972; Volume 55.
- Bullen, P.S. A Dictionary of Inequalities. In Pitman Monographs and Surveys in Pure and Applied Mathematics; Addison Wesley Longman Limited: Harlow, UK, 1998; Volume 97. [Google Scholar]
- Feng, Y.-F. Proof Without Words: Jordan’s Inequality 2x/π ≤ sinx ≤ x,0 ≤ x ≤ π/2. Math. Mag. 1996, 69, 126. [Google Scholar] [CrossRef]
- Kober, H. Approximation by integral functions in the complex domain. Trans. Am. Math. Soc. 1944, 56, 7–31. [Google Scholar] [CrossRef] [Green Version]
- Mitrinović, D.S. Analytic Inequalities; Springer: Berlin, Germany, 1970. [Google Scholar]
- Sándor, J. On the concavity of sin x/x. Octogon Math. Mag. 2005, 13, 406–407. [Google Scholar]
- Bagul, Y.J.; Chesneau, C. Generalized Bounds for Sine and Cosine Functions. Asian-Eur. J. Math. 2020. [Google Scholar] [CrossRef]
- Bagul, Y.J.; Chesneau, C. Refined forms of Oppenheim and Cusa–Huygens type inequalities. Acta Comment. Univ. Tartu. Math. 2020, 24, 183–194. [Google Scholar] [CrossRef]
- Bagul, Y.J.; Chesneau, C.; Kostić, M. On the Cusa-Huygens inequality. RACSAM 2021, 115, 29. [Google Scholar] [CrossRef]
- Bagul, Y.J.; Banjac, B.; Chesneau, C.; Kostić, M.; Malešević, B. New refinements of Cusa-Huygens inequality. Results Math. 2021, 76, 107. [Google Scholar] [CrossRef]
- Bagul, Y.J.; Panchal, S.K. Certain inequalities of Kober and Lazarević type. J. Indian Math. Soc. 2022, 89, 1–7. [Google Scholar]
- Bercu, G. The natural approach of trigonometric inequalities—Padé approximant. J. Math. Inequal. 2017, 11, 181–191. [Google Scholar] [CrossRef] [Green Version]
- Bercu, G. Sharp bounds on the sinc function via the Fourier series method. J. Math. Inequal. 2019, 13, 495–504. [Google Scholar] [CrossRef] [Green Version]
- Bhayo, B.A.; Klén, R.; Sándor, J. New trigonometric and hyperbolic inequalities. Miskolc Math. Notes 2017, 18, 125–137. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.-P.; Sándor, J. Sharp inequalities for trigonometric and hyperbolic functions. J. Math. Inequal. 2015, 9, 203–217. [Google Scholar] [CrossRef] [Green Version]
- Chesneau, C.; Bagul, Y.J. A note on some new bounds for trigonometric functions using infinite products. Malays. J. Math. Sci. 2020, 14, 273–283. [Google Scholar]
- Chouikha, A.R. Sharp inequalities on circular and hyperbolic functions using Bernoulli inequality types. RACSAM 2021, 115. [Google Scholar] [CrossRef]
- Chouikha, A.R.; Chesneau, C.; Bagul, Y.J. Some refinements of well-known inequalities involving trigonometric functions. J. Ramanujan Math. Soc. 2021, 36, 193–202. [Google Scholar]
- Dhaigude, R.M.; Bagul, Y.J.; Raut, V.M. Generalized bounds for hyperbolic sine and hyperbolic cosine functions. Tbilisi Math. J. 2021, 14, 41–47. [Google Scholar] [CrossRef]
- Malešević, B.; Lutovac, T.; Banjac, B. One method for proving some classes of exponential analytic inequalities. Filomat 2018, 32, 6921–6925. [Google Scholar] [CrossRef] [Green Version]
- Malešević, B.; Lutovac, T.; Rašajski, M.; Banjac, B. Double-sided Taylor’s approximations and their applications in theory of trigonometric inequalities. In Trigonometric Sums and Their Applications; Raigorodskii, A., Rassias, M.T., Eds.; Springer: Cham, Switzerland, 2020; pp. 159–167. [Google Scholar] [CrossRef]
- Mortici, C. The natural approach of Wilker-Cusa-Huygens inequalities. Math. Inequal. Appl. 2011, 14, 535–541. [Google Scholar] [CrossRef] [Green Version]
- Nenezić, M.; Malešević, B.; Mortici, C. New approximations of some expressions involving trigonometric functions. Appl. Math. Comput. 2016, 283, 299–315. [Google Scholar] [CrossRef] [Green Version]
- Neuman, E. Refinements and generalizations of certain inequalities involving trigonometric and hyperbolic functions. Adv. Inequal. Appl. 2012, 1, 1–11. [Google Scholar]
- Qi, F.; Niu, D.-W.; Guo, B.-N. Refinements, Generalizations and Applications of Jordan’s inequality and related problems. J. Inequal. Appl. 2009, 2009, 52. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Ma, X. Some new results of Mitrinović-Cusa’s and related inequalities based on the interpolation and approximation method. J. Math. 2021, 2021. [Google Scholar] [CrossRef]
- Zhu, L. A source of inequalities for circular functions. Comput. Math. Appl. 2009, 58, 1998–2004. [Google Scholar] [CrossRef] [Green Version]
- Zhu, L. Some new bounds for Sinc function by simultaneous approximation of the base and exponential functions. RACSAM 2020, 114. [Google Scholar] [CrossRef]
- Zhu, L. New bounds for the sine function and tangent function. Mathematics 2021, 9, 2373. [Google Scholar] [CrossRef]
- Zhu, L.; Malešević, B. New Wilker-type and Huygens-type inequalities. Hacet. J. Math. Stat. 2021, 50, 46–62. [Google Scholar] [CrossRef]
- Gradshteyn, I.S.; Ryzhik, I.M. Table of Integrals, Series and Products; Elsevier: Amsterdam, The Netherlands, 2007. [Google Scholar]
- Alzer, H. Sharp bounds for the Bernoulli numbers. Arch. Math. 2000, 74, 207–211. [Google Scholar] [CrossRef]
- Anderson, G.D.; Vamanamurthy, M.K.; Vuorinen, M. Conformal Invariants, Inequalities and Quasiconformal Maps; John Wiley and Sons: New York, NY, USA, 1997. [Google Scholar] [CrossRef]
- Kwong, M.K. On Hopital-style rules for monotonicity and oscillation. arXiv 2015, arXiv:1502.07805. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bagul, Y.J.; Dhaigude, R.M.; Kostić, M.; Chesneau, C. Polynomial-Exponential Bounds for Some Trigonometric and Hyperbolic Functions. Axioms 2021, 10, 308. https://doi.org/10.3390/axioms10040308
Bagul YJ, Dhaigude RM, Kostić M, Chesneau C. Polynomial-Exponential Bounds for Some Trigonometric and Hyperbolic Functions. Axioms. 2021; 10(4):308. https://doi.org/10.3390/axioms10040308
Chicago/Turabian StyleBagul, Yogesh J., Ramkrishna M. Dhaigude, Marko Kostić, and Christophe Chesneau. 2021. "Polynomial-Exponential Bounds for Some Trigonometric and Hyperbolic Functions" Axioms 10, no. 4: 308. https://doi.org/10.3390/axioms10040308
APA StyleBagul, Y. J., Dhaigude, R. M., Kostić, M., & Chesneau, C. (2021). Polynomial-Exponential Bounds for Some Trigonometric and Hyperbolic Functions. Axioms, 10(4), 308. https://doi.org/10.3390/axioms10040308