Some Unified Integrals for Generalized Mittag-Leffler Functions
Abstract
:1. Introduction and Preliminaries
2. Main Results
3. Concluding Remark
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Agarwal, P.; Choi, J. Certain unified integrals associated with Bessel functions. Bound. Value Probl. 2013, 1, 1–9. [Google Scholar]
- Srivastava, H.M.; Agarwal, P.; Jain, S. Generating functions for the generalized Gauss hypergeometric functions. Commun. Appl. Math. Comput. 2014, 247, 348–352. [Google Scholar] [CrossRef]
- Agarwal, P.; Al-Mdallal, Q.; Cho, Y.J.; Jain, S. Fractional differential equations for the generalized Mittag-Leffler function. Adv. Differ. Equ. 2018, 1, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Agarwal, R.P.; Agarwal, P.; Ruzhansky, M. (Eds.) Special Functions and Analysis of Differential Equations, 1st ed.; Chapman and Hall/CRC Press: Boca Raton, FL, USA, 2020. [Google Scholar]
- Choi, J.; Agarwal, P. Certain unified integrals involving a product of Bessel functions of the first kind. Honam Math. J. 2013, 35, 667–677. [Google Scholar] [CrossRef]
- Choi, J.; Agarwal, P. A note on fractional integral operator associated with multiindex Mittag-Leffler functions. Filomat 2016, 30, 1931–1939. [Google Scholar] [CrossRef]
- Agarwal, P.; Chand, M.; Baleanu, D.; Jain, S. On the solutions of certain fractional kinetic equations involving k-Mittag-Leffler function. Adv. Differ. Equ. 2018, 1, 1–13. [Google Scholar] [CrossRef]
- Agarwal, P.; Nieto, J.J. Some fractional integral formulas for the Mittag-Leffler type function with four parameters. Open Math. 2015, 13, 537–546. [Google Scholar] [CrossRef]
- Goyal, R.; Agarwal, P.; Momami, S.; Rassias, M.T. An Extension of Beta Function by Using wiman’s function. Axioms 2021, 10, 187. [Google Scholar] [CrossRef]
- Jain, S.; Agarwal, R.P.; Agarwal, P.; Singh, P. Certain Unified Integrals Involving a Multivariate Mittag–Leffler Function. Axioms 2021, 10, 81. [Google Scholar] [CrossRef]
- Prabhakar, T.R. A singular integral equation with a generalized Mittag-Leffler function in the kernel. Yokohama Math. J. 1971, 19, 7–15. [Google Scholar]
- Srivastava, H.M.; Choi, J. Zeta and q-Zeta Functions and Associated Series and Integrals; Elsevier Science Publishers: Amsterdam, The Netherlands; London, UK; New York, NY, USA, 2012. [Google Scholar]
- Srivastava, H.M.; Daoust, M.C. A note on the convergence of Kampe´ de Fe´riet’s double hypergeometric series. Math. Nachr. 1985, 53, 151–159. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Exton, H. A generalization of the Weber-Schafheitlin integral. J. Reine Angew. 1979, 309, 1–6. [Google Scholar]
- Oberhettinger, F. Tables of Mellin Transforms; Springer: New York, NY, USA, 1974. [Google Scholar]
- Khan, W.A.; Khan, I.; Singh, B.M. On unified integral associated with the generalized Mittag-Leffler function. Glob. J. Pure Appl. Math. 2017, 13, 4415–4424. [Google Scholar]
- Rainville, E.D. Special Functions; Macmillan: New York, NY, USA, 1960. [Google Scholar]
- Saxena, R.K.; Kalla, S.L. Solutions of Volterra-type integro-differential equations with a generalized Lauricella confluent hypergeometric function in the kernels. J. Math. Math. Sci. 2005, 8, 1155–1170. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Singh, P.; Jain, S.; Cattani, C. Some Unified Integrals for Generalized Mittag-Leffler Functions. Axioms 2021, 10, 261. https://doi.org/10.3390/axioms10040261
Singh P, Jain S, Cattani C. Some Unified Integrals for Generalized Mittag-Leffler Functions. Axioms. 2021; 10(4):261. https://doi.org/10.3390/axioms10040261
Chicago/Turabian StyleSingh, Prakash, Shilpi Jain, and Carlo Cattani. 2021. "Some Unified Integrals for Generalized Mittag-Leffler Functions" Axioms 10, no. 4: 261. https://doi.org/10.3390/axioms10040261
APA StyleSingh, P., Jain, S., & Cattani, C. (2021). Some Unified Integrals for Generalized Mittag-Leffler Functions. Axioms, 10(4), 261. https://doi.org/10.3390/axioms10040261