Differential Models, Numerical Simulations and Applications
Abstract
:1. Special Issue Overview
1.1. Numerical Methods, Simulations and Control for Particles Dynamics
1.2. Modeling and Numerical Methods for Traffic and Manifacturing Problems
1.3. Inverse Problems for Biomedical Applications
1.4. Theoretical Study and Numerical Solutions for Integro-Differential Equations
Funding
Conflicts of Interest
References
- Bretti, G.; De Ninno, A.; Natalini, R.; Peri, D.; Roselli, N. Estimation Algorithm for a Hybrid PDE–ODE Model Inspired by Immunocompetent Cancer-on-Chip Experiment. Axioms 2021, 10, 243. [Google Scholar] [CrossRef]
- Fabrèges, B.; Lagoutière, F.; Tran Tien, S.; Vauchelet, N. Relaxation Limit of the Aggregation Equation with Pointy Potential. Axioms 2021, 10, 108. [Google Scholar] [CrossRef]
- Camilli, F. A Quadratic Mean Field Games Model for the Langevin Equation. Axioms 2021, 10, 68. [Google Scholar] [CrossRef]
- Scianna, M.; Preziosi, L. A Cellular Potts Model for Analyzing Cell Migration across Constraining Pillar Arrays. Axioms 2021, 10, 32. [Google Scholar] [CrossRef]
- Briani, M.; Cristiani, E.; Ranut, P. Macroscopic and Multi-Scale Models for Multi-Class Vehicular Dynamics with Uneven Space Occupancy: A Case Study. Axioms 2021, 10, 102. [Google Scholar] [CrossRef]
- Delle Monache, M.L.; Chi, K.; Chen, Y.; Goatin, P.; Han, K.; Qiu, J.-M.; Piccoli, B. A Three-Phase Fundamental Diagram from Three-Dimensional Traffic Data. Axioms 2021, 10, 17. [Google Scholar] [CrossRef]
- Göttlich, S.; Herty, M.; Weldegiyorgis, G. Input-to-State Stability of a Scalar Conservation Law with Nonlocal Velocity. Axioms 2021, 10, 12. [Google Scholar] [CrossRef]
- Aggarwal, A.; Lombardi, D.; Pant, S. An Information-Theoretic Framework for Optimal Design: Analysis of Protocols for Estimating Soft Tissue Parameters in Biaxial Experiments. Axioms 2021, 10, 79. [Google Scholar] [CrossRef]
- Vallarino, E.; Sorrentino, A.; Piana, M.; Sommariva, S. The Role of Spectral Complexity in Connectivity Estimation. Axioms 2021, 10, 35. [Google Scholar] [CrossRef]
- Carfora, M.; Torcicollo, I. A Fractional-in-Time Prey–Predator Model with Hunting Cooperation: Qualitative Analysis, Stability and Numerical Approximations. Axioms 2021, 10, 78. [Google Scholar] [CrossRef]
- Diele, F.; Marangi, C.; Martiradonna, A. Non-Standard Discrete RothC Models for Soil Carbon Dynamics. Axioms 2021, 10, 56. [Google Scholar] [CrossRef]
- Messina, E.; Vecchio, A. Analysis of the Transient Behaviour in the Numerical Solution of Volterra Integral Equations. Axioms 2021, 10, 23. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bretti, G. Differential Models, Numerical Simulations and Applications. Axioms 2021, 10, 260. https://doi.org/10.3390/axioms10040260
Bretti G. Differential Models, Numerical Simulations and Applications. Axioms. 2021; 10(4):260. https://doi.org/10.3390/axioms10040260
Chicago/Turabian StyleBretti, Gabriella. 2021. "Differential Models, Numerical Simulations and Applications" Axioms 10, no. 4: 260. https://doi.org/10.3390/axioms10040260
APA StyleBretti, G. (2021). Differential Models, Numerical Simulations and Applications. Axioms, 10(4), 260. https://doi.org/10.3390/axioms10040260