On Some Fractional Integral Inequalities Involving Caputo–Fabrizio Integral Operator
Abstract
:1. Introduction
2. Preliminaries
3. Fractional Inequalities for Chebyshev Functional
4. Fractional Inequalities for Extended Chebyshev Fractional
5. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Anastassiou, G.A. Fractional Differentiation Inequalities; Springer Publishing Company: New York, NY, USA, 2009. [Google Scholar]
- Baleanu, D.; Machado, J.A.T.; Luo, C.J. Fractional Dynamic and Control; Springer: Berlin/Heidelberg, Germany, 2012; pp. 159–171. [Google Scholar]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Application of Fractional Differential Equations; Elsevier: Amersterdam, The Netherlands, 2006. [Google Scholar]
- Miller, K.S.; Ross, B. An Introduction to the Fractional Calculus and Fractional Differential Equations; Wiley: New York, NY, USA, 1993. [Google Scholar]
- Podlubny, I. Fractional Differential Equations; Academic Press: New York, NY, USA, 1999. [Google Scholar]
- Somko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integral and Derivative Theory and Application; Gordon and Breach: Montreux, Switzerland; Philadelphia, PA, USA, 1993. [Google Scholar]
- Chebyshev, P.L. Sur les expressions approximatives des integrales definies par les autres prise entre les memes limites. Proc. Math. Soc. Charkov 1882, 2, 93–98. [Google Scholar]
- Dargomir, S.S.; Pearce, C.E. Selected Topics in Hermit–Hadamard Inequality; Victoria University: Melbourne, Autralia, 2000; Available online: http://rgmia.vu.edu.au/amonographs/hermite-hadmard.html (accessed on 9 September 2021).
- Dahmani, Z. New inequalities in fractional integrals. Int. J. Nonlinear Sci. 2010, 4, 493–497. [Google Scholar]
- Belarbi, S.; Dahmani, Z. On some new fractional integral inequality. J. Inequal. Pure Appl. Math. 2009, 10, 86. [Google Scholar]
- Marinkoric, S.; Rajkovic, P.; Stankovic, M. The inequalities for some q-integrals. Comput. Math. Appl. 2008, 56, 2490–2498. [Google Scholar] [CrossRef] [Green Version]
- Pachpatte, B.G. Anote on Chebyshev-Grüss type inequalities for differential function. Tamsui. Oxf. J. Math. Sci. 2006, 22, 29–36. [Google Scholar]
- Anastassiou, G.A.; Hooshmandasl, M.R.; Ghasemi, A.; Moftakharzadeh, F. Montgomery identities for fractional integrals and related fractional inequalities. J. Inequal. Pure Appl. Math. 2009, 10, 97. [Google Scholar]
- Chinchane, V.L.; Pachpatte, D.B. A note on some integral inequalities via Hadamard integral. J. Fract. Calc. Appl. 2013, 4, 1–5. [Google Scholar]
- Chinchane, V.L.; Pachpatte, D.B. A note on fractional integral inequalities involving convex functions using Saigo fractional integral. Indian J. Math. 2019, 61, 27–39. [Google Scholar]
- Chinchane, V.L.; Pachpatte, D.B. On some integral inequalities using Hadamard fractional integral. Malaya J. Math. 2012, 1, 62–66. [Google Scholar]
- Chinchane, V.L. On Chebyshev type inqualities using generalized K-fractional integral operator. Progr. Fract. Differ. Appl. 2017, 3, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Dahmani, Z. Some results associate with fractional integrals involving the extended Chebyshev. Acta Univ. Apulensis Math. Inform. 2011, 27, 217–224. [Google Scholar]
- Katugampola, U.N. A new approch to generalized fractional derivatives. Bull. Math. Anal. Appl. 2014, 6, 1–15. [Google Scholar]
- Kiryakova, V. On two Saigo’s fractional integral operator in the class of univalent functions. Fract. Calc. Appl. Anal. 2006, 9, 159–176. [Google Scholar]
- Nale, A.B.; Panchal, S.K.; Chinchane, V.L. Certain fractional integral inequalities using generalized Katugampola fractional integral operator. Malaya J. Math. 2020, 3, 791–797. [Google Scholar]
- Nale, A.B.; Panchal, S.K.; Chinchane, V.L.; Al-Bayatti, H.M.Y. Fractional integral inequalities using Marichev-Saigo-Maeda fractional integral operator. Progr. Fract. Differ. Appl. 2021, 7, 249–255. [Google Scholar] [CrossRef]
- Caputo, M.; Fabrizio, M. A new Defination of Fractional Derivative without singular kernel. Progr. Fract. Differ. Appl. 2015, 1, 73–85. [Google Scholar]
- Caputo, M.; Fabrizio, M. Applications of new time and Spatial fractional derivative with exponential kernels. Progr. Fract. Differ. Appl. 2016, 2, 7–8. [Google Scholar] [CrossRef]
- Abdeljawad, T.; Baleanu, D. On fractional derivatives with exponential kernel and their discrete versions. Rep. Math. Phys. 2017, 1, 11–27. [Google Scholar] [CrossRef] [Green Version]
- Abdeljawad, T. Fractional operators with exponential kernels and a Lyapunov type inequality. Adv. Differ. 2017, 2017, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Al-Refai, M.; Jarrah, A.M. Fundamental results on weighted Caputo-Fabrizo fractional derivative. Chaos Solitons Fractals 2019, 126, 7–11. [Google Scholar] [CrossRef]
- Dokuyucu, M.A. A fractional order alcoholism model via Caputo–Fabrizio derivative. Aims Math. 2020, 5, 781–797. [Google Scholar] [CrossRef]
- Alshabanat, A.; Jleli, M.; Kumar, S.; Samet, B. Generalization of Caputo–Fabrizio Fractional Derivative and Applications to Electrical Circuits. Front. Phys. 2020, 8, 7–11. [Google Scholar] [CrossRef]
- Atanacković, T.M.; Janev, M.; Pilipović, S. Wave equation in fractional Zener-type viscoelastic media involving Caputo–Fabrizio fractional derivatives. Meccanica 2019, 54, 155–167. [Google Scholar] [CrossRef]
- Fadugba, S.E. Development of a new numerical scheme for the solution of exponential growth and decay models. Open J. Math. Sci. 2021, 4, 18–26. [Google Scholar] [CrossRef]
- Hristov, J.; Bennacer, R. Heat Conduction: Methods, Applications and Research; Nova Science Publishers: Hauppauge, NY, USA, 2019. [Google Scholar]
- Tariq, M.; Ahmad, H.; Sahoo, S.K. The Hermite-Hadamard Type Inequality and its Estimations via Generalized Convex Functions of Raina Type. Math. Model. Numer. Simul. Appl. (MMNSA) 2021, 1, 32–43. [Google Scholar]
- Nchama, G.A.M.; Mecias, A.L.; Richard, M.R. The Caputo–Fabrizio fractional integral to generate some new inequalities. Inf. Sci. Lett. 2019, 2, 73–80. [Google Scholar]
- Wang, X.; Saleem, M.S.; Aslam, K.N.; Wu, X.; Zhou, T. On Caputo–Fabrizio fractional integral inequalities of Hermite-Hadamard type for modified -convex functions. J. Math. 2020, 2020, 8829140. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chinchane, V.L.; Nale, A.B.; Panchal, S.K.; Chesneau, C. On Some Fractional Integral Inequalities Involving Caputo–Fabrizio Integral Operator. Axioms 2021, 10, 255. https://doi.org/10.3390/axioms10040255
Chinchane VL, Nale AB, Panchal SK, Chesneau C. On Some Fractional Integral Inequalities Involving Caputo–Fabrizio Integral Operator. Axioms. 2021; 10(4):255. https://doi.org/10.3390/axioms10040255
Chicago/Turabian StyleChinchane, Vaijanath L., Asha B. Nale, Satish K. Panchal, and Christophe Chesneau. 2021. "On Some Fractional Integral Inequalities Involving Caputo–Fabrizio Integral Operator" Axioms 10, no. 4: 255. https://doi.org/10.3390/axioms10040255
APA StyleChinchane, V. L., Nale, A. B., Panchal, S. K., & Chesneau, C. (2021). On Some Fractional Integral Inequalities Involving Caputo–Fabrizio Integral Operator. Axioms, 10(4), 255. https://doi.org/10.3390/axioms10040255