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Abstract: In this paper, we deal with the Caputo—Fabrizio fractional integral operator with a nonsin-
gular kernel and establish some new integral inequalities for the Chebyshev functional in the case
of synchronous function by employing the fractional integral. Moreover, several fractional integral
inequalities for extended Chebyshev functional by considering the Caputo—Fabrizio fractional inte-
gral operator are discussed. In addition, we obtain fractional integral inequalities for three positive
functions involving the same operator.
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1. Introduction

Fractional calculus is a generalization of traditional calculus which deals with non-
negative integer order integration and differentials which have various applications in
different fields of science and technology. On this vast subject, we may cite [1-6]. In order
to introduce some preliminary background to our findings, let us consider the following:

[ o@oue— L[ o) (1 [T o), @

where ¢ and ¢ are two integrable functions which are synchronous on [r,7], ie.,

(p(&1) — ¢(&2))(9(&1) — ¢(&2) > 0 for any ¢q,&n € [r1,12]. Further development of this
functional can be found in [7,8]. Now, we present the extended Chebyshev’s function

defined by

T(p, ) =

rp—r

T@¥9.9):= [ o@dz [ @)@ ¥()az
+ Mo [" o0y

~([Fo@ewa)( [ o)

([T o@o@d) ([ o).

See [9]. In the literature, many specialists have proposed fractional integral inequal-
ities for Chebyshev functional (1) and extended Chebyshev functional (2), see [1,9-12].
Recently, many researchers in several fields have found different results about some known
fractional integral inequalities and applications by means of the generalization of the
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Riemann-Liouville, Caputo, Hadamard, Erdelyi—Kober, Saigo, Katugamapola and some
other fractional integral operators, see [1,9,13-22].

The main motivation of the Caputo-Fabrizio integral and derivative operator is that it
is a general fractional integral and derivative. In addition, it has a non singular kernel which
can be described as a real power turned into an integral by means of the Laplace transform.
Consequently, an exact solution can be easily found for several problems. Nowadays,
fractional integral and derivative play big role for modeling various phenomenon physics.
However, in [23,24], Caputo and Fabrizio introduced new fractional derivatives and inte-
grals without a singular kernel. Certain phenomena related to material heterogeneities
cannot be well-modeled by considering the Riemann-Liouville and Caputo fractional
derivatives due to the singular kernel. It stems from Caputo and Fabrizio’s proposal of a

new fractional integral involving the nonsingular kernel ef(l%()(é*s),o < k < 1. Recently,
many mathematicians in applied sciences are using the Caputo—Fabrizio fractional integral
operator to model their problems. For more details, we refer to [25-31]. In [32], the authors
presented the fundamental solutions to the Cauchy and Dirichlet problems based upon a
heat conduction equation equipped with the Caputo—Fabrizio derivative, which is investi-
gated on a line segment. The main advantage of the Caputo—Fabrizio integral operator is
that the boundary condition of the fractional differential equations with Caputo—Fabrizio
derivatives admits the same form as for the integer-order differential equations. In the liter-
ature, very little work has been conducted on fractional integral inequalities using Caputo
and Caputo—Fabrizio integral operators. In [10,14,16-18], the authors have established
some new integral inequalities for the Chebyshev and extended Chebyshev functionals
using different fractional operators. Recently, in [33], the authors have investigated several
new estimations of the Hermite-Hadamard type inequality via generalized convex func-
tions of the Raina type. In [34,35], the authors established fractional integral inequalities
involving the Caputo-Fabrizio operator. From the above cited work, the main objective of
this paper is to obtain some fractional integral inequalities for the functionals (1) and (2)
by considering the Caputo-Fabrizio fractional integral operator. In addition, we establish
some fractional integral inequalities for three positive and synchronous functions. The
paper is organized into the following sections. Section 2 gives some basic definitions of
fractional calculus. Section 3 is devoted to the proof of some fractional inequalities for
Chebyshev functionals using the Caputo-Fabrizio fractional operator. Section 4 presents
some inequalities involving the extended Chebyshev fractional in the case of synchronous
function by employing the Caputo—Fabrizio fractional integral operator. Finally, concluding
remarks are given in Section 5.

2. Preliminaries

Here, we provide some basic definitions of fractional calculus related to the Caputo-
Fabrizio fractional integral operator.

Definition 1 ([24,34]). Let x € R such that 0 < x < 1. The Caputo—Fabrizio fractional integral
of order x of a function ¢ is defined by

ilp@) = & [ (e pis)as. ®

For k¥ = 1, it is reduced to

%Wm=fwm.

The above defintion may be extended to any x > 0.
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Definition 2 ([24,34]). Let x,a € R such that 0 < x < 1. The Caputo—Fabrizio fractional
derivative of order x of a function ¢ is defined by

4 X ,
sl @] = 1 [ e (@ (o) @

In this study, the focus is put on the Caputo—Fabrizio fractional integral operator,
aiming to demonstrate some new inequalities involving it.

3. Fractional Inequalities for Chebyshev Functional

Here, we obtain inequalities for the Chebyshev functional using the Caputo-Fabrizio
fractional operator.

Theorem 1. Let ¢ and ¢ be two synchronous functions on [0, c0). Then for all &, x > 0, we have

5 [po(2)] > Ioéng,g[¢<§>]zg,¢[(p<m 5)

where Ij:[1] = — [1 - e(lxx)ﬁ]

Proof. Since ¢ and ¢ are synchronous on [0, o) for all u,0 > 0, we have

(¢() — ¢(0)) (9(1) — 9(6)) > 0. (6)

From (6), we get
(1)) +9(0)9(6) = (1) (0) + ¢(0) (). @

By multiplying (7) by %e_(l%C )& ), which is positive, and then integrating the result-
ing identity with respect to u from 0 to ¢, we have

118 (55 E g ) p o)t + [

o Ao
wh

Hence,
75, 199)() +9(0)g(0) - [ (¥)E My )
> 90 (e (VR piau +9(0) L [ ()N g0y
which implies that

T509(0)) + 9(0)p(O1Thg 1) 2 9(6)T5;9(0) + $(O)Thz9(0). (10)

By multiplying (10) by %ei (%) (69, which is positive, and then integrating 6 from 0
to ¢, we have

T3lpg@)) [ e U0 Va0 4 7, [T (R)E 0 p0)g(0)0

0

(11)
> T p(@1L [ e (V000 + T30 ] [ e () Op(0)0

K
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Therefore
I§ b (&) 5 1] + T [T g9 (0)] W
> Tl (@)| 289 (2)) + Tielo(@) 1 Tl (2)):

It follows that
510 2T 00 @)]] = 278 0(D)1 T o (@)): (13)

This ends the proof of Theorem 1. [J

Theorem 2. Let ¢ and ¢ be two synchronous functions on [0,00). Then, for all §,x,A > 0,
we have

(25— ) mtvmen + (125 [1- e 2] lamn

1—x
> I5 (9 (0)] Zoe [0 (8)] + Zo e [0(8)] T3 [9(2)).

(14)

Proof. To prove this theorem, first multiply the inequality (10) by %e_ (54) (€=9), which is
positive. Then, by integrating the resulting identity with respect to 6 over 0 to ¢, we obtain

(15)

and this ends the proof of Theorem 2. [
Remark 1. Applying Theorem 2 for x = A, we rediscover Theorem 1.

Theorem 3. Let (¢;)i—17,._, be positive increasing functions on [0, c0). Then, for all &,k > 0,
we have

Ig,g

n 1—p 1
[19:4@)] = [Z5:0]  T1Z5elgi()) (16)
i=1 i=1

Proof. We prove this theorem by induction. Clearly, for n = 1, we have Zg:[¢1(Z)] =

I(;J(,éw)l (&)], forall &, x > 0.
For n = 2, applying the Equation (5), we obtain

-1
Tielpnp(O) = [Z5:0)] il (@) Z5[92(2)]. (17)
Suppose that, by induction hypothesis,
n—1 2_pn—1
oo | @] = [7500)" " TTazlonc2) (19)

for all ¢, x > 0. Now, since (¢;);—12,.., are positive increasing functions, then (I_H‘:_l1 $i)(E)
is an increasing function. Therefore we can apply Theorem 1 to the functions H?;ll pi=¢
and ¢, = ¢, and we obtain
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7, [ Tn0)] > Igl 09u(@)]| = T lo0(@)
> [25,00)] T8 l0(@)1 T3 9(0)
> 25,1 110@ [0 |7 )
> (73] (75, Hfowz T3 ()
1]

nnzog [9: (S

> [

This completes the proof of Theorem 3. O

4. Fractional Inequalities for Extended Chebyshev Fractional

Here, we present some inequalities on extended Chebyshev fractional in the case of
synchronous functions by employing the Caputo-Fabrizio fractional integral operator.

Lemma 1. Let ¢ and ¢ be two integrable and synchronous functions on [0, 00) and u,v : [0,00) —
[0, 00). Then, for all x,& > 0, we have

Lo (O o ¢[00 ()] + Tog[0(8))Zo ¢ [upg(S)] =

T [0 @) T o9/(©) + T o9 (N Tl (@) 20
Proof. Since ¢ and ¢ are synchronous functions on [0, ), for all 1,8 > 0, we have
($(0) — 9(6)) (9(1) — 9(6)) 2 0. e
Owing to (21), we obtain
P(m)e(p) +¢(0)p(0) = ¢(1)p(60) + P(0) (1) (22)

By multiplying (22) by %6_ (55)E—n ), which is positive, and then integrating with
respect to y from 0 to ¢, we have

L e G gy pluran + / R u0)9(0)g(6)d
Tl @)
> e—<T><5—”)u(m¢ (O)du+ / FEu(0)p(0)p (1)
Consequently,

Tiglugp(@)] + 9(0)p(6) T [u(2)) on

> @(0)Zo[up(S)] + ¢(0) Loz [ug(S)].

By multiplying (24) by @87 (55) (579), which is positive, and then integrating with
respect to  from 0 to ¢, we have
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(25)

This completes the proof of the inequality (20). O

Now, we give our main result.

Theorem 4. Let ¢ and ¢ be two integrable and synchronous functions on [0,c0), and r, p, q:
[0,00) — [0, 00). Then, for all x,& > 0, we have

25 [1(9)) | T2 [P (2))Z5 £lagp(©)] + T e a(D)1Zh e [poo (@) +
zzog[p@] (@)1 T g (©)] =

T ()] | T P9 (@) T [00(D) + T lap (D)1 T [p ()] | + 26)
T e[p (@) [ Zh £ rp (@) Z5 £ lag (@) + T £lag (@)1 T ro (2] +
I5 (0] | T [rp (@) T [0 (©)) + T e[p (D)1 Zh e [rp(2)] |-

Proof. To prove this theorem, put u = p, v = g, and using Lemma 1, we get

L e [P (Do [a9e(8)] + Loz [9(8)) Lo [pPe(E)] >
Lo e lpp (D) Zo e lag(D)] + Lo £ [a9(8)1 Lo e [P (E)]-

Now , multiplying both sides in (27) by Zj » [r(&)], we have

(27)

T (2] [T5e[p (@)1 T la9 9 (D) + Tiela (@) T poo(@)]] >

(28)
T (@) |5 [p(D) T clag (@) + T lag (2] 5 po (@)
Again, by putting u = r,v = g, and using Lemma 1, we get

Ty e [r(D)])Zo e lage ()] + L £ [a(6)]1 Lo e [rpep(E)] =

29
I3 L (01T l90(©)] + T8 2 [0 (O Th e o @) )

By multiplying both sides of (29) by Zj:[p(¢)], we have

Loz lp(2)] [Ié‘,g[r(é)]fé‘,g[qw(é)] +Ié‘,gM(€)]I€,g[V¢<P(§)ﬂ > 40
Loz lp(2)] [Ié‘,g[w(é)]fé‘,g [99(O)] + Ié‘,g[ng(é‘)]fg,g[w(ﬁ)]]-

With the same arguments as in the inequalities (29) and (30), we can write

Ty [9(5)] [Ié‘,g[r(é)]fé‘,g[PW(é)] + Loz [p(0))To[regl (é)} >
Lo [9(S)] [Ié‘,g[rqb(é)]fé‘,g[wp(é‘)] + Lo [p¢(6)]Zo [Tfp(é‘)]]

Adding the inequalities (28), (30) and (31), we get the required inequality (26). O
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Lemma 2. Let ¢ and ¢ be two integrable and synchronous functions on [0, c0), and u,v: [0, 00| —
[0, 00). Then, for all &, x, A > 0, we have

T [ T3z [0p g (8)] + T3z [0(8)1 T8 £ luggp(8)] =

(32)
T [up(§)| Tz log (8)] + T £ [0(2)1Z5 £ [ug ())-

Proof. By multiplying both sides of (24) b @67(%)@79), which is positive, and then
y plymng Y X P
integrating with respect to 6 from 0 to ¢, we have

Iog[WINP(CNl | Fe (5 0(6)do
@)y [ e (P o(0)9(0)p(0)d0
> T [ug (@)l | ée*(T% D0(0)p(6)d0

+ Ié‘,g[ufp(é)]%/oge* )05 (0)p(0)do.

(33)

This completes the proof of Lemma 2. [

Theorem 5. Let ¢ and ¢ be two integrable and synchronous functions on [0,00), and r,p, g:
[0,00) — [0, 00). Then, forall &, x, A > 0, we have

I5 e [r ()] T 1a(8)] T e [ppp (8)] + 2 I £ [p ()] T s [a9p(2)]
+ Zye[9(2)] IS;[WPCP(C)H

+ | TP (@) Tocla(@)] + Toe[p(@)] Tigla(@)]| Tilrpo(@)]
T [(2)] | Zse[p(9)] Zi a9 ()] + Toelag (@) Zielpe(@)] |+
5 p(@)] | T5elre(©) Tz la9(D)] + Toelag (@) Telro(@))] +
T 00| Z5elro () Toelpo (@) + T lpf (@) Tielro(@)]]-

(34)

Proof. To prove this theorem, we put u = p, v = g and, by using Lemma 2, we get

T5 e [p(0)] Lo 999 (D)] + Tiela(®)] T s [ppe(8)] >
T5 e [p(8)] Zoelap ()] + Tielag(E)] I e [pe(8)].

Now, multiplying both sides of (35) by Zj :[r(&)], we obtain

(35)

T3 /(@) [ 5 p(©) T lapo(©)] + T la(@) T lpoo(@)] >

(36)
T @) Tl (@) Toclag(@)] + Toelag (@) T lpo(@)]]

By putting u = r, v = g, and using Lemma 2, we get

T [r(@)) Zozlapp(0)] + Tozla(0)] T lroe(2)] =

IK

(37)
5clre@) T3 [a9(0)] + Tozlap(§)] T e [ro(2)).
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By multiplying both sides of (37) by Zj :[p(¢)], we have
T3 ()] 75, /(@) Ta g (@) + Tl (&) T lrgp(@)]] > -
T8 [p(O) | Zh: [0 8)) T la(©)] + Telan(@)] Thelro(€)].
With the same argument as in the Equations (37) and (38), we obtain
T3 0(@)] [T, (@) g poo(@)] + T lp (@) T [rp(@)]] > -

T5ela(@)] | Toelro (@) Telpo (@) + Toclpp(@)] T lr(@)]-
Adding the inequalities (36), (38) and (39), we get the inequality (34). O

Remark 2. If ¢, ¢, 7, p and q are functions satisfying the following conditions:

1. The functions ¢ and ¢ are asynchronous on [0, 00).
2. The functions r, p, q are negative on [0, 00).
3. Two of the functions r, p, q are positive and the third is negative on [0, c0).

Then, the inequalities (26) and (34) are reversed.

Here, we give some fractional integral inequalities involving the Caputo-Fabrizio
fractional integer operator.

Theorem 6. Let ¢, ¢ and x be three positive functions on [0,00) such that

(@) = ¢(0))(9(1) — 9(0)) (x(w) +x(8)) = 0, (40)
forall u,0 > 0. Then

Lo (@) 125 1 - CF] ) + Tacloot0) Zoelate

> Lo el@( O] Lo g [9x(@)] + Zog[¢(8)] Zo elox (8], "
forall x,& > 0.
Proof. From the condition (40), for any y,6 > 0, we have
P()@()x (1) + ¢(1) () x(6) + P(6)p(6) x (1) + ¢(6)9(6)x(0) @)
= () pO)x (1) + ¢(0) (1) x (1) + ¢(0) (1) x(6) + P (1) 9(6) x (6)-

By multiplying both sides of the inequality (42) by %67(]%)@7”), which is positive,
and then integrating with respect to y from 0 to ¢, we get

1/56 (5 E 1) () (1) x (o)l + ~ / 1)@ (1)x(6)dp

1 [F e CRIEg0) g0 + - / e (%) HW) Ox@y
> L[ (N g g0yt + [l 0)g(u)x()dp

1 [ R0 g+ & [ (FNE g p@n)an
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which implies that
Lo elpox ()] + x(0)Zo [ (2)] + ¢(0)9(0) L £ [x()]
+90)g@x0)% [ (FIE My > o(0)75 o (0) )
90T ox(O)] + $OXO) Tz p(@)] + pOX(O) T, 6(0)]

1-x

Again, multiplying inequality (44) by %67( x )(éfe), which is positive, and integrating
with respect to 6 from 0 to ¢, we have

1—

T lpox @)L [[e ()00 1 7 lpp)] L [Me (F)EOx(0)a0

PR @)L [ (FIEg(0)p(0)d0

N (11 {1_ 4%)@})1 /05ef<1%><s—e>¢(g>¢<9)x(e>da (45)

K

5 lox (@] 18 ey e 1 ¢
ZL/OE(K)(QG)(M de+IOE‘PX K/Oe

K

n Lozle(©)] /Oge*(l%)@—ew(e) 5[¢ ]/Oée x(0)do.

K

Hence,

(2 [1—eWﬁf])zggwmuIg,-;[mo(«.:)]zg,g[x(@)]

1—x
T b@N koo 0]+ (1o [1-e (9] ) Toloox@) )
> T3, (ox(@) T 0(@)] + T lox (D) e [0(2)]
b 500 T5lox(2)] + Toglo(0)) e ox(@))

This completes the proof of the inequality (41). O

Theorem 7. Let ¢, ¢ and x be three positive functions on [0, co) such that

(@(n) = @(0))(@(n) + 9 (0)) (x(n) +x(6)) = 0, (47)
forall u,0 > 0. Then

Lo [9(0)] Lo glox ()] + Toglox ()] Zoglo(S)]

> T3 ox (@) Tl (@) + Thlx(@) T lpo(@)], )
forall x,& > 0.
Proof. From the condition (40), for any 4,6 > 0, we have
P e(u)x(p) +¢(u)e()x(0) + o) e(0)x (1) + ¢(1) 9(0)x(0) (9)

> ¢(0)p(m)x(1) +¢(0)p()x(0) + ¢ (0)p(0) x (1) + ¢(6)9(6)x(0).

By multiplying both sides of the inequality (49) by %e (55) €= , which is positive,
and then integrating with respect to u from 0 to ¢, we get
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L e U g+ x@) [ e U g gl
@) [Fe (Mg + 90 [Fe CFIEDp(0an
’i . ) 0 (50)
> 9(0) [ e VW oo +x(0) [ CFIEPp(0)p(p)dp
+90)9@) [ e D+ p@)9@x@) L [ e () Pay
which implies that
2 00x(@)] + X0 T l00(@)] + 9OV lgx(@)] + () () Zi9(0)]
> X(0) Tiglox(2)] + 1(0) T lpo(@)] + 0(0)9(0) T () -
+9(0)00)x(0) (15 [1 - e*”ﬂ )
With the same argument as in inequality (45), we obtain
(1221 2] ) Toeloon @] + Thzlow() Zela @)
F Il @) T 0()] + T 0(0)] T lon @) o

References

> T3 o (@) T [0(2)] + T3 [90()] T (@)
+ Ty (@) koo 0]+ (12 [1 - (¥ ) T loone)

This completes the proof of inequality (48). O

5. Concluding Remarks

In this paper, we studied the novel fractional integral inequalities for the Chebyshev
and extended the Chebyshev functionals by considering the Caputo—Fabrizio fractional
integral operator. In addition, we studied some inequalities for three positive functions
using the same operator. The inequalities investigated in this paper make some contribution
to the fields of fractional calculus and Caputo—Fabrizio fractional integral operators. In
the future, we hope that inequalities presented in this paper can prove the existence and
uniqueness of some ordinary differential equations, as well as initial and boundary value
problems involving Caputo-Fabrizio fractional operators.
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